[发明专利]一种基于移动情境的大规模在线推荐方法有效

专利信息
申请号: 201710070955.8 申请日: 2017-02-09
公开(公告)号: CN106951436B 公开(公告)日: 2020-06-19
发明(设计)人: 胡金龙;梁俊杰 申请(专利权)人: 华南理工大学
主分类号: G06F16/9536 分类号: G06F16/9536;G06Q30/02
代理公司: 广州市华学知识产权代理有限公司 44245 代理人: 李斌
地址: 510640 广*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 移动 情境 大规模 在线 推荐 方法
【说明书】:

发明公开了一种基于移动情境的大规模在线推荐方法,步骤包括:收集用户情境信息并进行行为偏好分析,得到用户行为偏好信息;将用户客户端信息、用户特征信息、用户历史行为信息以及用户行为偏好信息分为动态特征和非动态特征两类情境信息;由非动态特征,得到用户的非动态特征向量,并进行用户聚类,得到若干个用户类;计算非动态特征相似性,找到非动态特征相似性最大的所属聚类中心,并将所属聚类中心对应的聚类中的所有其余用户作为目标用户的粗选近邻用户;在粗选近邻用户中计算并得到精选近邻用户;根据精选近邻用户,确定目标用户的前N个推荐物品。本发明在有效地降低了移动推荐系统在线计算量的同时,还保持个性化推荐的高准确性。

技术领域

本发明涉及移动个性化推荐技术领域,尤其涉及一种基于移动情境的大规模在线推荐方法。

背景技术

通过分析移动用户历史行为和移动场景等移动情境信息,推荐系统能够实时地为不同的移动用户提供个性化的信息推荐服务,极大限度地提升了用户体验。

协同过滤(Collaborative Filtering)算法是推荐系统领域最早提出来的算法,该算法已经在学术界和工业界得到深入的研究和广泛的应用。基于用户的协同过滤算法用于为用户推荐和该用户兴趣相似的用户喜欢的物品。但随着用户数量的增加,计算量也急剧增大,对基于移动情境的在线推荐的准确性和实时性提出了很大的挑战。

发明内容

为了克服现有技术存在的缺点与不足,本发明提供一种基于移动情境的大规模在线推荐方法,用以降低移动推荐系统在线计算量,同时保持个性化推荐的高准确性。

为解决上述技术问题,本发明提供如下技术方案:一种基于移动情境的大规模在线推荐方法,包括如下步骤:

S1、收集用户情境信息并进行行为偏好分析,得到用户行为偏好信息;所述用户情境信息包括用户客户端信息、用户特征信息和用户历史行为信息;

S2、根据用户客户端信息、用户特征信息、用户历史行为信息和所述用户行为偏好信息的动态变化特性,将用户客户端信息、用户特征信息、用户历史行为信息以及用户行为偏好信息分为动态特征和非动态特征两类情境信息;

S3、由非动态特征,得到用户的非动态特征向量,并根据所述非动态特征向量进行用户聚类,得到若干个用户类;

S4、获得目标用户的非动态特征向量以及各个聚类中心的非动态特征向量,然后按非动态特征相似性的计算方法计算目标用户与各个聚类中心的相似性,取得相似性最大的聚类中心作为目标用户的聚类中心,并将所属聚类中心对应的聚类中的所有其余用户作为目标用户的粗选近邻用户;

S5、根据动态特征和非动态特征,在目标用户的粗选近邻用户中计算并得到精选近邻用户;

S6、根据精选近邻用户,确定目标用户的前N个推荐物品。

进一步地,所述步骤S1中,所述用户行为偏好信息包括用户的作息行为、用户的移动行为、用户对物品的偏好行为以及以上行为的规律性。

进一步地,所述步骤S2中,所述用户历史行为信息指用户在平台上的行为属性记录集合,所述行为属性记录集合包括用户的人口信息、用户对物品的操作行为、用户的操作时间、用户的设备信息、用户的网络信息及位置属性;

所述行为的规律性是指:在规律性时间窗口内,用户相应行为的发生次数是否达到预先规定的次数;若达到,则认为用户的相应行为具有规律性;否则认为用户的相应行为不具有规律性。

进一步地,所述规律性时间窗口的大小为大于等于7天。

进一步地,所述步骤S2中,所述动态变化特性是指:在一个变化特性时间窗口内,若用户的特征容易发生变化,则认为用户的相应特征是动态的;否则认为用户的特征是非动态的;其中,所述变化特性时间窗口的大小为1天;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华南理工大学,未经华南理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201710070955.8/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top