[发明专利]基于快速张量鲁棒模型的视频前景提取方法有效
申请号: | 201710076992.X | 申请日: | 2017-02-13 |
公开(公告)号: | CN106780519B | 公开(公告)日: | 2019-05-17 |
发明(设计)人: | 李平;王然;徐向华 | 申请(专利权)人: | 杭州电子科技大学 |
主分类号: | G06T7/11 | 分类号: | G06T7/11 |
代理公司: | 杭州奥创知识产权代理有限公司 33272 | 代理人: | 王佳健 |
地址: | 310018 浙*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 快速 张量 模型 视频 前景 提取 方法 | ||
1.基于快速张量鲁棒模型的视频前景提取方法,其特征在于对给定的一段视频,进行如下操作:
1)将视频看做三维张量,视频张量分解为低秩张量和稀疏张量,低秩张量由字典张量和系数张量重构,从而建立张量鲁棒模型;
2)通过傅里叶变换-随机优化迭代-傅里叶逆变换步骤,快速求解张量鲁棒模型,获得视频帧对应的字典张量、系数张量、稀疏张量;
3)依据上述步骤对视频帧逐个处理,视频帧背景由字典张量和系数张量的乘积表示,视频帧前景由稀疏张量表示,直至视频结束;
所述的步骤1)中的将视频看做三维张量,视频张量分解为低秩张量和稀疏张量,低秩张量由字典张量和系数张量重构,从而建立张量鲁棒模型,具体是:
1.1)将视频看做三维张量第一维n1和第三维n3分别表示视频帧的行数和列数,第二维n2表示视频帧的数目,视频帧为张量的侧向切片,张量的数值为各像素对应的灰度值;
1.2)视频张量分解为低秩张量和稀疏张量即低秩张量由字典张量和系数张量重构,即其中符号“*”为张量乘积,维度r远小于n1和n3的最小值;
1.3)依据上述定义,建立如下视频张量鲁棒模型:
其中符号‖·‖*表示核范数,‖·‖1表示L1范数,λ1>0为常数;
所述的步骤2)中的通过傅里叶变换-随机优化迭代-傅里叶逆变换步骤,快速求解张量鲁棒模型,获得视频帧对应的字典张量、系数张量、稀疏张量,具体是:
2.1)视频的第i帧为其对应的低秩张量为稀疏张量为字典张量由所有视频帧共享,系数张量为则傅里叶变换-随机优化迭代-傅里叶逆变换的详细步骤如下:
2.1.1)对视频帧沿第三维进行傅里叶变换得到并将其表示为对角块矩阵其对角元素上标对应视频帧的第1列、第2列,直到第n3列,即第k个块为
2.1.2)依照步骤2.1.1)类似地对视频帧的低秩张量、稀疏张量、字典张量、系数张量进行傅里叶变换和对角化diag(·)处理,得到
2.1.3)建立步骤1.3)中张量鲁棒模型的等价快速模型,即
其中,‖·‖F表示Frobenius范数,‖·‖2表示L2范数,λ2>0为常数;
2.2)对视频帧对应的字典张量随机初始化为0到1之间的实数,对低秩张量、稀疏张量和系数张量均初始化为全0变量,然后运用随机优化准则和迭代算法,求解2.1.3)中的快速张量鲁棒模型,分别得到对应傅里叶空间的字典张量系数张量稀疏张量低秩张量
2.3)对上述求解得到的变量进行傅里叶逆变换,得到视频帧在实数域空间的字典张量系数张量稀疏张量εi、低秩张量
2.如权利要求1所述的基于快速张量鲁棒模型的视频前景提取方法,其特征在于:所述的步骤3)中的对视频帧逐个处理,视频帧背景由字典张量和系数张量的乘积表示,视频帧前景由稀疏张量表示,具体是:
3.1)依照步骤1)和步骤2)对视频帧逐个处理,视频帧背景由字典张量和系数张量的乘积表示,即低秩张量视频帧前景由稀疏张量εi表示;
3.2)对视频中的所有帧依次重复步骤3.1),即可提取整个视频的前景。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于杭州电子科技大学,未经杭州电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710076992.X/1.html,转载请声明来源钻瓜专利网。