[发明专利]一种基于特征点密度由聚焦堆栈估计深度的方法和装置有效
申请号: | 201710090688.0 | 申请日: | 2017-02-20 |
公开(公告)号: | CN106875436B | 公开(公告)日: | 2019-10-22 |
发明(设计)人: | 邱钧;何建梅;刘畅 | 申请(专利权)人: | 北京信息科技大学 |
主分类号: | G06T7/55 | 分类号: | G06T7/55 |
代理公司: | 北京汇智胜知识产权代理事务所(普通合伙) 11346 | 代理人: | 石辉 |
地址: | 100192 北*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 特征 密度 聚焦 堆栈 估计 深度 方法 装置 | ||
本发明公开了一种基于特征点密度由聚焦堆栈估计深度的方法和装置,所述方法包括:提取聚焦堆栈中每个图像的特征点,建立基于特征点密度的聚焦测度;建立引入特征点密度的加权聚焦测度的估计深度的模型:以采用SML聚焦测度为例,建立SML与特征点密度的加权线性混合聚焦测度作为深度估计的目标函数,实现对场景深度的估计和全聚焦图。本发明的方案,建立关于特征点密度的聚焦测度及建立线性加权聚焦测度,并构建基于聚焦测度的深度估计模型,获取场景的深度信息,以实现场景的全聚焦与三维重构,可为现实三维重构提供精确的深度信息并获取全聚焦图像。
技术领域
本发明涉及计算机视觉与数字图像处理领域,尤其涉及一种基于特征点密度由聚焦堆栈估计深度的方法和装置。
背景技术
场景三维信息的数字化拓展了人类对三维空间的认知和表达方式,基于图像的三维重建一直是计算视觉的研究热点。场景深度信息重构可为虚拟现实、增强现实以及摄影测量等提供三维信息,是重构三维场景的关键。
目前,基于图像的场景深度估计的方法主要分为立体视觉方法和单目视觉方法。对于立体视觉方法,深度估算方法以视差法较为常见,视差法以不同视点图像间产生的视差作为深度估计的依据,其核心问题在于匹配,因此视差法在平滑区域和遮挡区域存在较大误差。
对于单目视觉方法而言,主要是利用聚焦和失焦信息。在同一场景不同聚焦深度图像的变焦数据实现对场景的深度估计,聚焦法核心问题在于聚焦度测量。图像中点距离聚焦平面距离的不同,相应地聚焦程度也不一样。目前,对图像上像素点的聚焦程度的刻画,大多采用散焦测度或聚焦测度,从而计算物点的深度。散焦测度的深度估计是利用系统点扩散函数反推求解,进行深度估计。对聚焦测度的刻画,应用比较广泛的有:Modifield-Laplacian、the Tenengard Algorithm和Gray-Level Variance、小波变换和信息熵等。但是,现有技术中的聚焦测度方法在图像纹理区域检测的准确性不高。
发明内容
本发明的目的在于提供一种基于特征点密度由聚焦堆栈估计深度的方法和装置,其能够弥补常规聚焦测度方法在纹理区域检测不准确的问题。
为实现上述目的,本发明提供一种基于特征点密度由聚焦堆栈估计深度的方法,所述方法包括:提取聚焦堆栈中每个图像的特征点,根据所述每个图像的特征点得到特征点密度的聚焦测度;利用特征点密度的聚焦测度和已有的聚焦测度,建立线性加权的聚焦测度,根据所述线性加权的聚焦测度得到图像中任意像素点的聚焦测度值;根据图像中任意像素点的聚焦测度值估计图像中物点的深度。
进一步地,所述提取聚焦堆栈中每个图像的特征点,具体根据透镜与探测器的相互运动或改变透镜的焦距,提取出聚焦堆栈中每个图像的特征点。
进一步地,所述建立特征点密度的聚焦测度具体为:
其中,R(x,y)(d)为像素点(x,y)的特征点密度的聚焦测度,表示落入像素点(x,y)邻域Ω(x,y)内的特征点数,Sd(xm,ym)表示点m在深度d下的图像坐标。
进一步地,所述已有的聚焦测度具体为改进的拉普拉斯(SML)聚焦测度,相应的,所述利用特征点密度的聚焦测度和已有的聚焦测度,建立的线性加权的聚焦测度,具体为
其中,
for
表示SML聚焦测度,为改进的拉普拉斯算子,Id(x,y)表示在d深度下所成图像,step表示SML算子中的步进值,参数N决定计算像素点(x,y)的聚焦测度的窗口大小,α∈[0,1]是平衡聚焦测度算子与特征点测度算子的权重。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京信息科技大学,未经北京信息科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710090688.0/2.html,转载请声明来源钻瓜专利网。