[发明专利]一种旋转机械的振动信号故障识别方法在审
申请号: | 201710101560.X | 申请日: | 2017-02-24 |
公开(公告)号: | CN106908232A | 公开(公告)日: | 2017-06-30 |
发明(设计)人: | 伍婷婷 | 申请(专利权)人: | 伍婷婷 |
主分类号: | G01M13/00 | 分类号: | G01M13/00;G01M13/04 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 238300 安徽省*** | 国省代码: | 安徽;34 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 旋转 机械 振动 信号 故障 识别 方法 | ||
1.一种旋转机械的振动信号故障识别方法,包含故障类型判别、故障特征提取、故障指标提炼、故障模式识别;
所述故障类型判别,首先提取旋转机械的振动信号,采用小波包分析将所述旋转机械的振动信号分解到时间尺度域,从发生脉冲的时间间隔来获取所述旋转机械的振动信号的特征频率,从而判别旋转机械是否存在故障,如果存在故障,将存在故障的旋转机械的振动信号进行所述故障特征提取;
所述故障特征提取采用小波包分解把存在故障的旋转机械的振动信号分解到相邻的不同频段上,提取感兴趣的频段成分进行重构,从而有效提取所述存在故障的旋转机械的振动信号的有效特征;
所述故障指标提炼将所述存在故障的旋转机械的振动信号的有效特征数字化,并根据小波包分解原理构建时频能量表达式,将数字化后的所述存在故障的旋转机械的振动信号的有效特征作为所述时频能量表达式的计算参数,从而计算出从所述存在故障的旋转机械的振动信号的频率尺度随时间变化的局部化指标,以时间为横坐标、以所述存在故障的旋转机械的振动信号的频率尺度为纵坐标,绘制局部化指标曲线;
所述故障模式识别以所述局部化指标曲线作为输入,构建一个两级多层神经网络,所述两级多层神经网络的一级用于识别所述存在故障的旋转机械的振动信号的故障模式,所述两级多层神经网络的二级用于估算所述存在故障的旋转机械的振动信号的故障的程度,将所述故障模式的结果综合,以数据表存储的形式结果。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于伍婷婷,未经伍婷婷许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710101560.X/1.html,转载请声明来源钻瓜专利网。
- 上一篇:隧道掘进机滚刀密封结构
- 下一篇:一种压力旋转卫生进液座