[发明专利]用户轨迹恢复方法及装置有效
申请号: | 201710132289.6 | 申请日: | 2017-03-07 |
公开(公告)号: | CN108574933B | 公开(公告)日: | 2020-11-27 |
发明(设计)人: | 耿杰 | 申请(专利权)人: | 华为技术有限公司 |
主分类号: | H04W4/029 | 分类号: | H04W4/029;H04W64/00 |
代理公司: | 北京中博世达专利商标代理有限公司 11274 | 代理人: | 申健 |
地址: | 518129 广东*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 用户 轨迹 恢复 方法 装置 | ||
1.一种用户轨迹恢复方法,其特征在于,所述方法包括:
获取待恢复轨迹的用户的原始轨迹点数据序列,其中,所述原始轨迹点数据序列中的每个原始轨迹点数据包括该原始轨迹点对应的基站的标识和采集时间点;
基于映射模型和所述原始轨迹点数据序列,在总体映射代价最小的情况下,确定在规整时间点上所述用户所处的基站的标识,得到所述用户的去噪轨迹点数据序列,其中,所述去噪轨迹点数据序列中的每一个去噪轨迹点数据包括该去噪轨迹点数据对应的基站的标识和规整时间点;所述规整时间点为固定时间间隔的时间点;所述映射模型的限定条件包括:一个原始轨迹点数据映射到一个规整时间点的一个基站的标识上,以及在同一个规整时间点上多个原始轨迹点数据最多映射到一个基站的标识上;
根据所述去噪轨迹点数据序列,恢复所述待恢复轨迹的用户的轨迹,包括:
基于所述去噪轨迹点数据序列和预先训练好的用户-基站模型,确定所述用户的基站粒度的去噪轨迹点数据序列;其中,所述用户-基站模型的参数包括:N个基站之间的转移概率,其中,N为所述原始轨迹点数据序列中包括的不同的基站的标识的数量;
基于所述基站粒度的去噪轨迹点数据序列和预先训练好的基站-地理栅格模型,确定所述用户的地理栅格粒度的去噪轨迹点数据序列;其中,所述基站-地理栅格模型的参数包括:M个地理栅格之间的转移概率,以及每个地理栅格对所述N个基站的输出概率,M为正整数;
根据所述地理栅格粒度的去噪轨迹点数据序列,恢复所述待恢复轨迹的用户的轨迹;
其中,基于所述去噪轨迹点数据序列和预先训练好的用户-基站模型,确定所述用户的基站粒度的去噪轨迹点数据序列;包括:
根据所述去噪轨迹点数据序列中的去噪轨迹点数据包含的规整时间点,确定所述去噪轨迹点数据序列中缺失的轨迹点数据包含的规整时间点;
根据所述N个基站之间的转移概率以及第一预设公式,确定在所述缺失的轨迹点数据包含的规整时间点上,所述用户所处的基站分别对应所述N个基站中的任意一个基站的情况下,由所述缺失的轨迹点数据包含的基站的标识所对应的基站和所述去噪轨迹点数据包含的基站的标识所对应的基站构成的第一完整路径的转移概率,其中,所述第一预设公式包括:第一完整路径的转移概率=所述第一完整路径上各个基站之间的转移概率的乘积;
将所述第一完整路径的转移概率最大的路径上的多个基站确定为所述待恢复轨迹的用户在不同规整时间点上所处的基站;
根据所述待恢复轨迹的用户在不同规整时间点上所处的基站,确定所述待恢复轨迹的用户的基站粒度的去噪轨迹点数据序列。
2.根据权利要求1所述的方法,其特征在于,所述方法还包括:
获取训练所述用户-基站模型的多个第一训练数据,其中,所述多个第一训练数据中的每个第一训练数据中均包括基站的标识和采集时间点;
根据所述每个第一训练数据,确定从所述N个基站的任意一个基站分别转移至所述N个基站中的任意一个基站的次数;
根据所述从所述N个基站的任意一个基站分别转移至所述N个基站中的任意一个基站的次数,基于第三预设公式,确定所述N个基站之间的转移概率,其中,所述第三预设公式包括:
其中,α(n1,n2)表示从第n1个基站转移至第n2个基站的次数,
表示从所述第n1个基站转移至所述N个基站的总次数,ω(n1,n2)表示从所述第n1个基站转移至所述第n2个基站的转移概率。
3.根据权利要求1所述的方法,其特征在于,所述方法还包括:
获取训练所述用户-基站模型的多个第一训练数据,其中,所述多个第一训练数据中的每个第一训练数据中均包括基站的标识和采集时间点;
根据所述每个第一训练数据,确定从所述N个基站的任意一个基站分别转移至所述N个基站中的任意一个基站的次数;
根据所述从所述N个基站的任意一个基站分别转移至所述N个基站中的任意一个基站的次数,基于第三预设公式,确定所述N个基站之间的转移概率,其中,所述第三预设公式包括:
其中,α(n1,n2)表示从第n1个基站转移至第n2个基站的次数,
表示从所述第n1个基站转移至所述N个基站的总次数,ω(n1,n2)表示从所述第n1个基站转移至所述第n2个基站的转移概率。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华为技术有限公司,未经华为技术有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710132289.6/1.html,转载请声明来源钻瓜专利网。