[发明专利]一种确定烟气双效型溴化锂制冷机制冷量及排烟参数的计算方法在审

专利信息
申请号: 201710133639.0 申请日: 2017-03-07
公开(公告)号: CN108019977A 公开(公告)日: 2018-05-11
发明(设计)人: 赵志渊;林振娴 申请(专利权)人: 林振娴
主分类号: F25B15/06 分类号: F25B15/06
代理公司: 暂无信息 代理人: 暂无信息
地址: 100081 北京市*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 确定 烟气 双效型 溴化锂 制冷机 制冷 参数 计算方法
【权利要求书】:

1.一种烟气双效型溴化锂制冷机制冷量及排烟参数的计算方法,其特征在于:所述的制冷量及排烟参数计算方法包括以下步骤:

S1,相关参数的采集与测定;

S2,制冷机设计参数的选定;

S3,热力循环点参数的计算;

S4,设备负荷、传热面积计算及制冷量的确定。

2.根据权利要求1所述的烟气双效型溴化锂制冷机制冷量及排烟参数的计算方法,其特征在于:S1相关参数的采集与测定还包括如下步骤:

S11,根据项目系统构成,采集烟气双效型溴化锂制冷机烟气成分、进口温度及流量等参数信息,计算烟气比热容;

S12,确定加热工作烟气热损失的附加系数,确定冷媒水的进、出口温度及冷却水进口温度。

3.根据权利要求1所述的烟气双效型溴化锂制冷机制冷量及排烟参数的计算方法,其特征在于:S2制冷机设计参数的选定还包括如下步骤:

1)设定烟气双效型溴化锂制冷机流程结构,是串联还是并联;

2)设定烟气双效型溴化锂制冷机吸收器与冷凝器的连接方式,是串联还是并联;

3)设定冷却水总温升,并对吸收器出口和冷凝器出口的冷却水温升进行分配;

4)设定吸收器出口处稀溶液与吸收器冷却水温差;

5)设定溴化锂溶液冷凝温度与冷却水出口处温度的差值;

6)设定溴化锂溶液蒸发温度与冷媒水出口处温度的差值;

7)设定吸收器压损及再循环倍数;

8)设定溴化锂溶液从吸收器中流到低压发生器后浓度变化量;

9)设定溴化锂溶液在高压发生器中浓度变化量;

10)设定凝结水离开凝结水换热器的温度;

11)设定蒸发器的再循环倍数。

4.根据权利要求1所述的烟气双效型溴化锂制冷机制冷量及排烟参数的计算方法,其特征在于:S3热力循环点参数的计算还包括如下步骤:

1)根据第一计算式计算蒸发器出口处冷剂蒸气的温度,所述一计算式为:

t0=tx′-Δt

式中,t0为蒸发器出口处冷剂蒸气的温度,℃;tx′为冷媒水出口温度,℃;Δt为蒸发温度与冷媒水出口温度的差值,℃;

2)根据蒸发器出口处冷剂蒸气的温度确定其压力p0及焓值h0

3)根据第二计算式计算从蒸发器流入到吸收器内的饱和水的压力,所述第二计算式为:

p1=p0-ΔP0

式中,p1为从蒸发器流入到吸收器内的饱和水的压力,MPa;ΔP0为吸收器进口处与出口处稀溶液的压力差,MPa;

4)根据从蒸发器流入到吸收器内的饱和水的压力确定其温度t1及焓值h1

5)根据第三计算式计算从蒸发器流入到吸收器内的蒸汽压力,所述第三计算式为:

p1a=p1

式中,p1a为从蒸发器流入到吸收器内的蒸汽压力,MPa;

6)根据从蒸发器流入到吸收器内的蒸汽压力确定其温度t1a及焓值h1a

7)根据第四计算式计算吸收器出口处稀溶液的温度,所述第四计算式为:

t2=tw+Δtw

式中,t2为吸收器出口处稀溶液的温度,℃;tw为吸收器冷却水进口温度,℃;Δtw为吸收器出口处稀溶液与吸收器冷却水温差,℃;

8)根据第五计算式计算吸收器出口处稀溶液的压力,所述第五计算式为:

P2=P1

式中,P2为吸收器出口处稀溶液的压力,MPa;

9)根据第六计算式计算吸收器出口处稀溶液的浓度,所述第六计算式为:

式中,ξ2为吸收器出口处稀溶液的浓度,%;A、B、C、D为吸收器出口处稀溶液浓度的计算系数,其取值根据吸收器出口处稀溶液压力下的饱和温度计算得到;

10)根据第七计算式计算吸收器出口处稀溶液的焓值,所述第七计算式为

式中,h2为吸收器出口处稀溶液的焓值,kJ/kg;E、F、G为吸收器出口处稀溶液焓值的计算系数,其取值根据吸收器出口处稀溶液的温度和浓度计算得到;

11)根据第八计算式计算冷凝器出口处冷剂水的温度,所述第八计算式为:

t3=tcw+Δtk

式中,t3为冷凝器出口处冷剂水的温度,℃;tcw为冷却水出口温度,℃;Δtk为冷凝温度与冷却水出口温度的差值,℃;

12)根据冷凝器出口处冷剂水的温度确定其压力p3及焓值h3

13)根据第九计算式计算低压发生器产生的水蒸汽的压力,所述第九计算式为:

P3a=P3

式中,P3a为低压发生器产生的水蒸汽的压力,MPa;

14)根据低压发生器产生的水蒸汽的压力,确定其焓值h3a

15)根据第十计算式计算高压发生器内的饱和水的压力,所述第十计算式为:

P3b=Pr

式中,P3b为高压发生器内的饱和水的压力,MPa;Pr为为高压发生器的压力,MPa;

16)根据高压发生器内的饱和水的压力确定其温度t3b及焓值h3b

17)根据第十一计算式计算高压发生器内水蒸汽的压力,所述第十一计算式为:

P3c=Pr

式中,P3c为高压发生器内水蒸汽的压力,MPa;

18)根据高压发生器内水蒸汽的压力确定其焓值h3c

19)根据第十二计算式计算低压发生器出口处浓溶液的压力,所述第十二计算式为:

P4=P3

式中,P4为低压发生器出口处浓溶液的压力,MPa;

20)根据第十三计算式计算低压发生器出口处浓溶液的浓度,所述第十三计算式为:

ξ4=ξ2+Δξ1(烟气双效吸收式溴化锂制冷机流程结构为并联流程时)

ξ4=ξ5+Δξ1(烟气双效吸收式溴化锂制冷机流程结构为串联流程时)

式中,ξ4为低压发生器出口处浓溶液的浓度,%;Δξ1为溴化锂溶液从吸收器中流到低压发生器后浓度变化量,%;ξ5为高温热交换器出口处的浓溶液(饱和溶液)的浓度,%;

21)根据第六计算式和第七计算式分别计算低压发生器出口处浓溶液的温度t4和焓值h4

22)根据第十四计算式计算高温热交换器出口处的浓溶液(饱和溶液)的压力,所述第十四计算式为:

P5=P3(烟气双效吸收式溴化锂制冷机流程结构为串联流程时)

式中,P5为高温热交换器出口处的浓溶液(饱和溶液)的压力,MPa;

23)根据第十五计算式计算高温热交换器出口处的浓溶液(饱和溶液)的浓度,所述第十五计算式为:

ξ5=ξ12(烟气双效吸收式溴化锂制冷机流程结构为串联流程时)

式中,ξ12为高压发生器出口处浓溶液的浓度,%;

24)根据第六计算式和第七计算式分别计算高温热交换器出口处的浓溶液(饱和溶液)的温度t5和焓值h5(烟气双效吸收式溴化锂制冷机流程结构为串联流程时);

25)根据第十六计算式计算低温热交换器的稀溶液的压力,所述第十六计算式为:

P7=P3

式中,P7为低温热交换器的稀溶液的压力,MPa;

26)根据第十七计算式计算低温热交换器的稀溶液的浓度,所述第十七计算式为:

ξ7=ξ2

式中,ξ7为低温热交换器的稀溶液的浓度,%;

27)根据第六计算式计算低温热交换器的稀溶液的温度t7

28)根据第十八计算式计算低温热交换器的稀溶液的焓值,所述第十八计算式为:

式中,h7为低温热交换器的稀溶液的焓值,kJ/kg;a1为低位发生器循环倍率;h8为低温热交换器出口处的浓溶液(过冷溶液)的焓值,kJ/kg;

29)根据第十九计算式计算低温热交换器出口处的浓溶液(过冷溶液)的压力,所述第十九计算式为:

P8=P3

式中,P8为低温热交换器出口处的浓溶液(过冷溶液)的压力,MPa;

30)根据第二十计算式计算低温热交换器出口处的浓溶液(过冷溶液)的浓度,所述第二十计算式为:

ξ8=ξ4

式中,ξ8为低温热交换器出口处的浓溶液(过冷溶液)的浓度,%;

31)根据第二十一计算式计算低温热交换器出口处的浓溶液(过冷溶液)的温度,所述第二十一计算式为:

t8=t2+Δth

式中,t8为低温热交换器出口处的浓溶液(过冷溶液)的温度,℃;Δth为低温热交换器出口处的浓溶液与入口处的温差,℃;

32)根据第七计算式计算低温热交换器出口处的浓溶液(过冷溶液)的焓值h8

33)根据第二十二计算式计算吸收器的喷淋溶液的压力,所述第二十二计算式为:

P9=P2

式中,P9为吸收器的喷淋溶液的压力,MPa;

34)根据第二十三计算式计算吸收器的喷淋溶液的浓度,所述第二十三计算式为:

(烟气双效吸收式溴化锂制冷机流程结构为并联流程时);

(烟气双效吸收式溴化锂制冷机流程结构为串联流程时);

式中,ξ9为吸收器的喷淋溶液的浓度,%;ξ13为高温热交换器出口处的浓溶液(过冷溶液)的浓度,%;qmh为单位时间进入高位发生器的稀溶液质量流量,kg/s;qmdh为高压发生器中产生的水蒸汽量,kg/s;qml为单位时间进入低位发生器的稀溶液质量流量,kg/s;qmdl为低压发生器中产生的水蒸汽量,kg/s;qmd为冷剂水质量流量,kg/s;f为吸收器的再循环倍数;

35)根据第六计算式计算吸收器的喷淋溶液的温度t9

36)根据第二十四计算式计算吸收器的喷淋溶液的焓值,所述第二十四计算式为:

(烟气双效吸收式溴化锂制冷机流程结构为并联流程时);

(烟气双效吸收式溴化锂制冷机流程结构为串联流程时);

式中,h9为吸收器的喷淋溶液的焓值,kJ/kg;h13为高温热交换器出口处的浓溶液(过冷溶液)的焓值,kJ/kg;

37)根据第二十五计算式计算高温热交换器的稀溶液的压力,所述第二十五计算式为:

P10=Pr

式中,P10为高温热交换器的稀溶液的压力,MPa;

38)根据第二十六计算式计算高温热交换器的稀溶液的浓度,所述第二十六计算式为:

ξ10=ξ2

式中,ξ10为高温热交换器的稀溶液的浓度,%;

39)根据第六计算式计算高温热交换器的稀溶液的温度t10

40)根据第二十七计算式计算高温热交换器的稀溶液的焓值,所述第二十七计算式为:

(烟气双效吸收式溴化锂制冷机流程结构为并联流程时);

(烟气双效吸收式溴化锂制冷机流程结构为串联流程时);

式中,h10为高温热交换器的稀溶液的焓值,kJ/kg;ah为高压发生器循环倍率;h12为高压发生器出口处浓溶液的焓值,kJ/kg;

41)根据第二十八计算式计算高压发生器出口处浓溶液的压力,所述第二十八计算式为:

P12=Pr

式中,P12为高压发生器出口处浓溶液的压力,MPa;

42)根据第二十九计算式计算高压发生器出口处浓溶液的浓度,所述第二十九计算式为:

ξ12=ξ2+Δξ2

式中,ξ12为高压发生器出口处浓溶液的浓度,%;Δξ2为溴化锂溶液从吸收器中流到高压发生器后浓度变化量,%;

43)根据第六计算式和第七计算式分别计算高压发生器出口处浓溶液的温度t12和焓值h12

44)根据第三十计算式计算高温热交换器出口处的浓溶液(过冷溶液)的压力,所述第三十计算式为:

P13=Pr(仅烟气双效吸收式溴化锂制冷机流程结构为串联流程时);

式中,P13为高温热交换器出口处的浓溶液(过冷溶液)的压力,MPa;

45)由于高温热交换器入口处浓溶液的温度较高,所以在热交换器中温降大于低温热交换器中浓溶液的温升,通常浓溶液的出口温度在60~70℃范围内(仅烟气双效吸收式溴化锂制冷机流程结构为串联流程时);

46)根据第三十一计算式计算高温热交换器出口处的浓溶液(过冷溶液)的浓度,所述第三十一计算式为:

ξ13=ξ12(仅烟气双效吸收式溴化锂制冷机流程结构为串联流程时);

式中,ξ13为高温热交换器出口处的浓溶液(过冷溶液)的浓度,%;

47)根据第七计算式计算高温热交换器出口处的浓溶液(过冷溶液)的焓值h10(仅烟气双效吸收式溴化锂制冷机流程结构为串联流程时);

48)根据第三十二计算式计算低压发生器循环倍率,所述第三十二计算式为:

式中,al为低压发生器循环倍率;

49)根据第三十三计算式计算高压发生器循环倍率,所述第三十三计算式为:

式中,ah为高压发生器循环倍率;

5.根据权利要求1所述的烟气双效型溴化锂制冷机制冷量及排烟参数的计算方法,其特征在于:S4设备负荷、传热面积计算及制冷量的确定还包括如下步骤:

1)根据第三十四计算式计算制冷机中冷剂水的流量,所述第三十四计算式为:

式中,qmd为制冷机中冷剂水的流量,kg/s;Q0为烟气双效型溴化锂制冷机的制冷量,kW;

2)根据第三十五计算式计算低压发生器中产生的水蒸汽量,所述第三十五计算式为:

(烟气双效吸收式溴化锂制冷机流程结构为并联流程时);

(烟气双效吸收式溴化锂制冷机流程结构为并联流程时);

式中,qmdl为低压发生器中产生的水蒸汽量,kg/s;

3)根据第三十六计算式计算高压发生器中产生的水蒸汽量,所述第三十六计算式为:

qmdh=qmd-qmdl

式中,qmdh为高压发生器中产生的水蒸汽量,kg/s;

4)根据第三十七计算式计算单位时间进入高压发生器的稀溶液质量,所述第三十七计算式为:

qmh=ah×qmdh

式中,qmh为单位时间进入高压发生器的稀溶液质量,kg/s;

5)根据第三十八计算式计算单位时间进入低压发生器的稀溶液质量,所述第三十八计算式为:

qml=al×qmdl

式中,qml为单位时间进入高低压发生器的稀溶液质量,kg/s;

6)根据第三十九计算式计算高压发生器中产生1kg水蒸气时,在吸收器内产生的热负荷,所述第三十九计算式为:

qah=(ah-1)×h13-ah×h2+h1a(仅烟气双效吸收式溴化锂制冷机流程结构为并联流程时);

7)根据第四十计算式计算低压发生器中产生1kg水蒸气时在吸收器内产生的热负荷,所述第四十计算式为:

qal=(al-1)×h8-al×h2+h1a

式中,qal为低压发生器中产生1kg水蒸气时在吸收器内产生的热负荷,kJ/kg;

8)根据第四十一计算式计算高压发生器中产生1kg水蒸气时的热负荷,所述第四十一计算式为:

qgh=(ah-1)×h12-ah×h10+h3c

式中,qgh为高压发生器中产生1kg水蒸气时的热负荷,kJ/kg;

9)根据第四十二计算式计算低压发生器中产生1kg水蒸气时的热负荷,所述第四十二计算式为:

(烟气双效吸收式溴化锂制冷机流程结构为并联流程时);

(烟气双效吸收式溴化锂制冷机流程结构为串联流程时);

式中,qlh为低压发生器中产生1kg水蒸气时的热负荷,kJ/kg;

10)根据第四十三计算式计算吸收器热负荷,所述第四十三计算式为:

Qa=qmdh×qh+qmdl×ql(烟气双效吸收式溴化锂制冷机流程结构为并联流程时);

Qa=qmdl×ql(烟气双效吸收式溴化锂制冷机流程结构为串联流程时);

式中,Qa为吸收器热负荷,kW;

11)根据第四十四计算式计算高压发生器热负荷,所述第四十四计算式为:

Qgh=qmdh×qgh

式中,Qgh为高压发生器热负荷,kW;

12)根据第四十五计算式计算低压发生器热负荷,所述第四十五计算式为:

Qgl=qmdl×qgl

式中,Qgl为低压发生器热负荷,kW;

13)根据第四十六计算式计算冷凝器热负荷,所述第四十六计算式为:

Qk=qmdh×(h3c-h3)+qmdl×(h3a-h3)(烟气双效吸收式溴化锂制冷机流程结构为并联流程时):

Qk=qmdh×(h3c-h3)-Qgh+qmdl×(h3a-h3)(烟气双效吸收式溴化锂制冷机流程结构为串联流程时);

式中,Qk为冷凝器热负荷,kW;

14)蒸发器热负荷等于溴化锂制冷机的制冷量Q0

15)根据第四十七计算式计算高压溶液热交换器的总热负荷,所述第四十七计算式为:

Qexh=qmh×(h10-h2)

式中,Qexh为高压溶液热交换器的总热负荷,kW;

16)根据第四十八计算式计算低压溶液热交换器的总热负荷,所述第四十八计算式为:

Qexl=qml×(h7-h2)

式中,Qexl为低压溶液热交换器的总热负荷,kW;

17)凝结水热交换器的总热负荷Qexv等于低温水总放热量荷Qv

18)根据第四十九计算式计算烟气双效型溴化锂制冷机的热力系数,所述第四十九计算式为:

式中,ζ为烟气双效型溴化锂制冷机的热力系数;

19)根据第五十计算式计算烟气双效型溴化锂制冷机的加热工作烟气流量,所述第五十计算式为:

式中,qmv2为烟气双效型溴化锂制冷机的加热工作烟气流量,kg/s;

20)根据第五十一计算式计算烟气双效型溴化锂制冷机的冷媒水流量,所述第五十一计算式为:

式中,qv0为烟气双效型溴化锂制冷机的冷媒水流量,kg/s;tx″为冷媒水进口温度,℃;tx′为冷媒水出口温度,℃;

21)根据第五十二计算式计算烟气双效型溴化锂制冷机的冷却水泵的流量,所述第五十二计算式为:

(a.吸收器所需冷却水泵的流量);

(b.冷凝器所需冷却水泵的流量);

(吸收器和冷凝器为并联连接时,冷却水泵的流量);

(吸收器和冷凝器为串联连接时,冷却水泵的流量);

式中,为吸收器所需冷却水泵的流量,m3/h;Δtw1为冷却水在吸收器中的温升,℃;为冷凝器所需冷却水泵的流量,m3/h;Δtw2为冷却水在冷凝器中的温升,℃;为冷却水泵的流量,m3/h;

22)根据第五十三计算式计算烟气双效型溴化锂制冷机的蒸发器泵的流量,所述第五十三计算式为:

式中,qvd为烟气双效型溴化锂制冷机的蒸发器泵的流量,m3/h;f0为蒸发器的再循环倍数;

23)根据第五十四计算式计算烟气双效型溴化锂制冷机进入发生器的溶液密度,所述第五十四计算式为:

式中,ρa为烟气双效型溴化锂制冷机的吸收器溶液密度,kg/L;a0、a1、a2、a3、a4、a5、a6为烟气双效型溴化锂制冷机的吸收器溶液密度的计算系数;

24)根据第五十五计算式计算烟气双效型溴化锂制冷机吸收器的溶液密度,所述第五十五计算式为:

式中,ρ9为烟气双效型溴化锂制冷机的吸收器溶液密度,kg/L;a0、a1、a2、a3、a4、a5、a6为烟气双效型溴化锂制冷机的吸收器溶液密度的计算系数;

25)根据第五十六计算式计算烟气双效型溴化锂制冷机发生器泵的流量,所述第五十六计算式为:

式中,qVg为烟气双效型溴化锂制冷机发生器泵的流量,m3/h;

26)根据第五十七计算式计算烟气双效型溴化锂制冷机吸收器泵的流量,所述第五十六计算式为:

式中,qVg为烟气双效型溴化锂制冷机吸收器泵的流量,m3/h;f为吸收器的再循环倍数;

27)根据第五十八计算式计算烟气双效型溴化锂制冷机的高压发生器的传热面积,所述第五十八计算式为:

式中,Fgh为烟气双效型溴化锂制冷机的高压发生器的传热面积,m2;Kgh为烟气双效型溴化锂制冷机高压发生器的传热系数,W/(m2·℃);tf-in为加热工作烟气进口温度,℃;bg1为发生器换热过程中,冷流体换热系数,无量纲;

28)根据第五十九计算式计算烟气双效型溴化锂制冷机的低压发生器的传热面积,所述第五十九计算式为:

式中,Fgl为烟气双效型溴化锂制冷机的低压发生器的传热面积,m2;Kgl为烟气双效型溴化锂制冷机低压发生器的传热系数,W/(m2·℃);

29)根据第六十计算式计算烟气双效型溴化锂制冷机的冷凝器的传热面积,所述第六十计算式为:

(吸收器和冷凝器为并联连接时)

(吸收器和冷凝器为串联连接时)

式中,Fk为烟气双效型溴化锂制冷机的冷凝器的传热面积,m2;Kk为烟气双效型溴化锂制冷机冷凝器的传热系数,W/(m2·℃);bk1为冷凝器换热过程中,冷流体换热系数,无量纲;30)根据第六十一计算式计算烟气双效型溴化锂制冷机的吸收器的传热面积,所述第六十一计算式为:

式中,Fa为烟气双效型溴化锂制冷机的吸收器的传热面积,m2;Ka为烟气双效型溴化锂制冷机吸收器的传热系数,W/(m2·℃);aa1为吸收器换热过程中,热流体换热系数,无量纲;ba1为吸收器换热过程中,冷流体换热系数,无量纲;

31)根据第六十二计算式计算烟气双效型溴化锂制冷机的蒸发器的传热面积,所述第六十二计算式为:

式中,F0为烟气双效型溴化锂制冷机的蒸发器的传热面积,m2;K0为烟气双效型溴化锂制冷机蒸发器的传热系数,W/(m2·℃);b01为蒸发器换热过程中,冷流体换热系数,无量纲;32)根据第六十三计算式计算烟气双效型溴化锂制冷机的高温溶液热交换器的传热面积,所述第六十三计算式为:

(吸收器和冷凝器为并联连接时);

(吸收器和冷凝器为串联连接时)

式中,Fexh为烟气双效型溴化锂制冷机的高温溶液热交换器的传热面积,m2;Kexh为烟气双效型溴化锂制冷机高温溶液热交换器的传热系数,W/(m2·℃);aex1为高温溶液热交换器换热过程中,热流体换热系数,无量纲;bex1为高温溶液热交换器换热过程中,冷流体换热系数,无量纲;

33)根据第六十四计算式计算烟气双效型溴化锂制冷机低温溶液热交换器的传热面积,所述第六十四计算式为:

式中,Fexl为烟气双效型溴化锂制冷机的低温溶液热交换器的传热面积,m2;Kexl为烟气双效型溴化锂制冷机低温溶液热交换器的传热系数,W/(m2·℃);aex2为低温溶液热交换器换热过程中,热流体换热系数,无量纲;bex2为低温溶液热交换器换热过程中,冷流体换热系数,无量纲;

34)根据第六十五计算式计算烟气双效型溴化锂制冷机的高压发生器的对数平均温差,所述第六十五计算式为:

式中,Δtm为烟气双效型溴化锂制冷机的高压发生器的对数平均温差,℃;tf-out为加热工作烟气出口温度,℃;

35)根据第六十六计算式计算烟气双效型溴化锂制冷机的高压发生器的核算对数平均温差,所述第六十六计算式为:

式中,Δt′m为烟气双效型溴化锂制冷机的高压发生器的核算对数平均温差,℃。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于林振娴,未经林振娴许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201710133639.0/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top