[发明专利]一种基于事件驱动的停车空余泊位数实时预测方法及系统有效

专利信息
申请号: 201710183782.0 申请日: 2017-03-24
公开(公告)号: CN106779256B 公开(公告)日: 2020-06-30
发明(设计)人: 王旭;牛磊 申请(专利权)人: 山东大学
主分类号: G06Q10/04 分类号: G06Q10/04;G06Q50/26;G06Q50/30
代理公司: 济南圣达知识产权代理有限公司 37221 代理人: 黄海丽
地址: 250061 山*** 国省代码: 山东;37
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 事件 驱动 停车 空余 泊位 实时 预测 方法 系统
【说明书】:

发明公开了一种基于事件驱动的停车空余泊位数实时预测方法及系统,其中该方法,包括获取历史停车信息并对其进行连续性的修复及平滑处理;所述历史停车信息包括历史车辆到达时间、离开时间、驱动事件发生时间及历史停车空余泊位数;基于驱动事件发生时间,根据历史停车信息且假设停车到达概率服从正态分布,得到当前时刻至下一时刻之间的停车车辆的到达概率和离开概率;再根据当前时刻实际采集的停车空余泊位数与当前时刻点至下一时刻点之间的停车到达概率和离开概率之和的差值,得到停车空余泊位数预测模型;将当前时刻点及下一时刻点均输入至停车空余泊位数预测模型,实时输出停车空余泊位数预测值。

技术领域

本发明属于交通信息系统领域,尤其涉及一种基于事件驱动的停车空余泊位数实时预测方法及系统。

背景技术

随着中国城市车辆的激增,停车需求与供给之间存在的不平衡性引发了多种交通问题。高峰时段停车需求和供给分布不均,使得停车泊位无法被高效利用,进而增加了城市道路的交通压力。停车诱导信息系统(Parking Guidance Information System)通过采集停车泊位信息,估计及预测停车空余泊位数量及位置,向用户提供实时准确的信息,协助用户规划出行路径,方便停车场管理者有效管理空余泊位。

国内外针对停车空余泊位数预测的相关研究主要包括,基于用户决策模型的预测方法及基于时间序列的短时预测方法研究。基于智能体的停车行为模型将停车行为划分为四个阶段:前往目的地、寻找停车位、停车和离开。整个停车过程被编码在地理信息系统中。用户停车决策取决于停车空余泊位数、停车费用和管理力度。然而,停车决策是一个涉及到多因素的复杂过程,因此若预测方法考虑因素不全面会得到不理想的预测结果。

此外,很多研究基于人工智能方法从时间序列的角度直接预测停车空余泊位数。例如利用小波神经网络方法、最大Lapunov指数方法、线性回归、支持向量机、神经网络及残存分析等方法预测停车位占用率。虽然上面提到的方法已在实测中被验证,但这些经验方法,普适性较差,无法表征停车动态行为。

发明内容

为克服上述现有技术的不足,本发明的第一目的是提供一种基于事件驱动的停车空余泊位数实时预测方法,该方法基于停车到达和离开的产生机理,考虑过去、现在及未来事件对停车空余泊位数的影响,实时预测停车空余泊位数。本发明具有适用性强及可实现实时预测的优点。

本发明的一种基于事件驱动的停车空余泊位数实时预测方法,包括:

获取历史停车信息并对其进行数据修复及平滑处理;所述历史停车信息包括历史车辆到达时间、离开时间、驱动事件发生时间及历史停车空余泊位数;

基于驱动事件发生时间,根据历史停车信息且假设停车到达概率服从正态分布,得到当前时刻至下一时刻之间的停车车辆的到达概率和离开概率;再根据当前时刻实际采集的停车空余泊位数与当前时刻点至下一时刻点之间的停车到达概率和离开概率之和的差值,得到停车空余泊位数预测模型;

将当前时刻点及下一时刻点均输入至停车空余泊位数预测模型,实时输出停车空余泊位数预测值。

进一步的,该方法还包括:基于皮尔森系数和绝对差值对平滑处理后的历史停车信息进行相关性检验。

本发明通过相关性检测来判断平滑处理后的历史停车信息之间的相关性,为准确构建停车空余泊位数预测模型,提供了数据基础。

进一步的,所述历史停车信息还包括停车卡号码、车牌号码、入口编号、出口编号及所支付停车费。

本发明的第二目的是提供一种基于事件驱动的停车空余泊位数实时预测系统。

本发明的基于事件驱动的停车空余泊位数实时预测系统,包括:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于山东大学,未经山东大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201710183782.0/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top