[发明专利]一种基于P3P算法的位置参数估计方法有效

专利信息
申请号: 201710220035.X 申请日: 2017-04-06
公开(公告)号: CN106991705B 公开(公告)日: 2020-03-10
发明(设计)人: 徐贵力;谢瑒;程月华;姜斌;郭瑞鹏;陈茂武 申请(专利权)人: 南京航空航天大学
主分类号: G06T7/80 分类号: G06T7/80;G06T7/70
代理公司: 南京纵横知识产权代理有限公司 32224 代理人: 朱妃;董建林
地址: 211106 江*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 p3p 算法 位置 参数估计 方法
【说明书】:

发明公开了一种基于P3P算法的位置参数估计方法,包括步骤:对使用的相机进行标定得到相机参数;在相机的当前使用位姿下,对空间中的4个特征点进行成像并获取4个特征点的世界坐标及其图像坐标;将4个特征点分成两组,以对角位置的两个特征点作为公共特征点,将剩余的2个特征点分别与公共特征点组成两组P3P特征点;根据每组P3P特征点中特征点的世界坐标和图像坐标,利用P3P算法求解出公共特征点位置参数的一组实数解,获取两组P3P特征点对应的两组实数解;从两组实数解中选取位置参数相似度最大的两个解并进行校验,最终确定出公共特征点的位置参数。通过确定唯一解并对唯一解进行校验,以提高位置参数解算的效率和准确性。

技术领域

本发明涉及一种位置参数估计方法,特别是涉及一种基于P3P算法的位置参数估计方法,属于计算机视觉技术领域。

背景技术

基于视觉的位姿估计技术是计算机视觉领域中的研究热点之一,是视觉定位及导航技术的重要环节。基于视觉的位姿估计技术,通过相机捕获空间合作目标图像,通过图像处理和位姿估计算法求解相机位姿参数,具有精度适中、成本低、使用独立灵活及抗电磁干扰的特点。

PnP算法作为常用的位姿测量方法,以空间中相对位置已知的n(n≥3)个点作为特征点,由摄像机采集一幅图像,计算摄像机相对于特征点的位姿信息。在实际应用中,特征点数越多,在相机与目标之间发生相对运动时,特征点容易超出成像图像范围,以及特征点匹配出现错误,最终导致解算失败。因此使用的特征点数越少,解算越灵活,一般使用P3P算法和P4P算法。

虽然,P3P算法精度与P4P算法精度相差不大;但是,P3P算法根据3个特征点最多可以解算出四组解,P4P算法根据4个特征点可以解得唯一解。然而,在图像处理阶段如果出现某个特征点提取错误,导致位姿解算错误,则该算法无法进行自我校验。因此,需要找到一种所需特征点数少、可以确定唯一解并且能够对唯一解进行校验的位姿解算算法。

发明内容

本发明的主要目的在于,克服现有技术中的不足,提供一种基于P3P算法的位置参数估计方法,不仅计算效率高,而且可提高位置参数解算的准确性,可应用于采用分离式合作目标引导无人机视觉着陆领域。

为了达到上述目的,本发明所采用的技术方案是:

一种基于P3P算法的位置参数估计方法,包括以下步骤:

1)对使用的相机进行标定,得到用于计算相机内参数模型的相机内参数,相机内参数包括相机的焦距和光心坐标;

2)在相机的当前使用位姿下,对空间中的4个特征点进行成像获得成像图像,以4个特征点中的任意一个特征点为原点建立世界坐标系,并获取4个特征点的世界坐标及其在成像图像中的图像坐标;

3)将4个特征点分成两组,以4个特征点中位于对角位置的两个特征点作为公共特征点,将4个特征点中剩余的2个特征点分别与公共特征点组成均具有3个特征点的两个子集,两个子集即为两组P3P特征点;

4)根据每组P3P特征点中特征点的世界坐标和图像坐标,利用P3P算法求解出公共特征点位置参数的一组实数解,获取两组P3P特征点对应的两组实数解;

5)从两组实数解中选取位置参数相似度最大的两个解并进行校验,最终确定出公共特征点的位置参数。

本发明进一步设置为:所述步骤1)中的标定采用张正友标定法。

本发明进一步设置为:所述步骤2)中的4个特征点满足任意3个特征点不共线、且4个特征点连线呈菱形的要求。

本发明进一步设置为:所述步骤2)中的获取4个特征点的世界坐标及其在成像图像中的图像坐标,具体为,

2-1)在空间中布置分离式的4个合作目标,每个合作目标的中心表示一个特征点,则共有4个特征点;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京航空航天大学,未经南京航空航天大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201710220035.X/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top