[发明专利]一种大规模MIMO系统上行链路低复杂度迭代检测算法有效
申请号: | 201710283929.3 | 申请日: | 2017-04-26 |
公开(公告)号: | CN107046433B | 公开(公告)日: | 2019-12-03 |
发明(设计)人: | 张文策;鲍煦;戴继生 | 申请(专利权)人: | 江苏大学 |
主分类号: | H04B7/0413 | 分类号: | H04B7/0413;H04L1/00 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 212013 江*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 大规模 mimo 系统 上行 链路低 复杂度 检测 算法 | ||
本发明公开一种大规模MIMO系统上行链路低复杂度迭代检测算法,首先,输入信道矩阵、基站接收信号矢量、算法迭代次数以及算法控制参数等信息;其次,迭代更新检测结果;最后,输出经过若干次迭代后的检测结果。本发明能够解决用户数目较多的大规模MIMO系统上行链路的低复杂度信号检测问题,适用于Rayleigh衰落信道下,算法具有收敛速度快、易于硬件实现以及误码率性能好等优点。
技术领域
本发明涉及一种适用于大规模MIMO(Multiple-Input-Multiple-Output,多输入多输出)系统上行链路的低复杂度检测算法,属于移动通信领域。
背景技术
近年来,随着人们日益增长的数据业务需求,移动通信领域发展迅速。目前,第五代移动通信系统(5G)的相关研究正在积极展开。其中,5G物理层核心技术之一为大规模MIMO技术。通过在基站侧使用大量的收发天线,大规模MIMO系统可以利用额外的自由度,并行传输多个数据流,同时提高分集增益,从而可以极大的增加频谱利用率、提高传输可靠性并改善系统的能量效率。
由于基站使用大量的收发天线,设计低复杂度的上行链路检测算法成为大规模MIMO系统实际应用中面临的重要挑战。虽然非线性检测算法性能一般优于线性检测算法,但是其复杂度很高。对于大规模MIMO系统,参考文献“Fredrik Rusek,et al,Scaling UpMIMO:Opportunities and Challenges with Very Large Arrays,IEEE SignalProcessing Magazine,vol.30,no.1,pp.40–60,January 2013”指出当接收天线数目足够大时,使用线性检测算法可以获得接近最优的性能。常见的线性检测算法有最大比合并(MRC)、迫零(ZF)以及最小均方误差(MMSE)等。其中,ZF和MMSE检测算法的性能一般显著优于MRC,但算法涉及大维矩阵的求逆操作,不利于硬件实现。
为了简化矩阵求逆操作,参考文献“M Wu,et al,Large-Scale MIMO Detectionfor 3GPP LTE:Algorithms and FPGA Implementations,IEEE Journal of SelectedTopics in Signal Processing,vol.8,no.5,pp.916–929,2014”提出利用Neumann级数来近似矩阵求逆,以降低计算复杂度,但仿真结果表明该方法导致较大的性能损失。参考文献“X.Gao,et al,Low-complexity near-optimal signal detection for uplink large-scale MIMO systems,Electronics Letters,vol.50,no.18,pp.1326–1328,August 2014”以及参考文献“B.Yin,et al,Conjugate gradient-based soft-output detection andprecoding in massive MIMO systems,”in 2014IEEE Global CommunicationsConference,Dec 2014,pp.3696–3701”分别提出利用Richardson方法和共轭梯度方法来简化矩阵求逆,然而这两种方法均涉及大量除法运算并且收敛速度较慢。参考文献“L.Dai,etal,Low-Complexity Soft-Output Signal Detection Based on Gauss-Seidel Methodfor Uplink Multiuser Large-Scale MIMO Systems,”IEEE Transactions on VehicularTechnology,vol.64,no.10,pp.4839–4845,Oct 2015”提出的基于Gauss-Seidel方法的检测算法虽然收敛速度较快,但是包含内部循环操作,并不适用于并行计算。参考文献“X.Qin,et al,A Near-Optimal Detection Scheme Based on Joint Steepest Descentand Jacobi Method for Uplink Massive MIMO Systems,”IEEE CommunicationsLetters,vol.20,no.2,pp.276–279,Feb 2016”基于最速下降法和Jocobi方法提出一种接近最优的检测算法,收敛速度很快且适合硬件实现,然而当用户数较多时该方法性能下降明显。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于江苏大学,未经江苏大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710283929.3/2.html,转载请声明来源钻瓜专利网。