[发明专利]一种基于卡通纹理分解的图像超分辨率重建方法有效

专利信息
申请号: 201710314024.8 申请日: 2017-05-05
公开(公告)号: CN107341765B 公开(公告)日: 2020-04-28
发明(设计)人: 徐健;李萌;范九伦;赵凤;赵小强;常志国 申请(专利权)人: 西安邮电大学
主分类号: G06T3/40 分类号: G06T3/40
代理公司: 西安通大专利代理有限责任公司 61200 代理人: 强宏超
地址: 710062 *** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 卡通 纹理 分解 图像 分辨率 重建 方法
【说明书】:

发明公开了一种基于卡通纹理分解的图像超分辨率重建方法,包括离线训练过程和在线测试过程,离线训练过程包括高低分辨率纹理字典对的训练和离线纹理锚点映射,在线测试过程,将低分辨率输入图像进行卡通和纹理分解;基于改进的全变分正则化方法重建出低分辨率卡通图像对应的高分辨率卡通图像;通过改进的基于外部训练样本纹理锚点映射矩阵的超分辨率方法重建出低分辨率纹理图像对应的高分辨率纹理图像;将重建出的卡通图像与纹理图像进行相加从而输出想要得到的高分辨率图像;同时具有这两种算法的优点,既具有较好的去噪能力和较强的边缘保持能力,又具有良好的适应性和鲁棒性。

【技术领域】

本发明属于图像处理领域,具体涉及一种基于卡通纹理分解的图像超分辨率重建方法。

【背景技术】

随着数字图像处理技术的不断深入发展,人们对高分辨率图像与视频的要求与日俱增,为了满足人们的需求,基于单帧图像的超分辨率重建技术就诞生了。图像超分辨率重建是将低分辨率图像恢复成高分辨率图像,这一问题一直以来都是图像领域界研究学者们探究的重要课题。目前,图像超分辨率重建被广泛应用于视频监控、卫星遥感成像、医学图像等各个领域。

已有的单帧图像超分辨技术大致可以分为三类:基于插值的方法,基于重建的方法和基于示例学习的方法。基于插值的方法被看作是超分辨率方法中最为基础的一种方法。尽管理论上讲这些方法是高效的,但是在许多实践过程中重建图像的质量并不理想。基于重建的方法虽然能产生清晰的边缘并且能抑制人工痕迹的产生,但并没有为高分辨率图像的输出提供任何新的有用的细节,尤其是在高放大倍率的情况下。基于示例学习的方法优于基于重建的方法,但在重建过程中会产生模糊效应,使低分辨率图像块不利于与实际图像块进行匹配,从而降低了重建图像的质量。

目前较流行的一种图像超分辨率方法是改进的邻域锚点映射方法,该方法主要分为离线的样本库训练和在线的图像重构两部分。在训练过程中,对收集到的高分辨率图像进行下采样得到低分辨率图像;然后将低分辨率图像经双线性插值算法放大,将得到的双线性插值图像依次实施提取梯度特征、分块、降维操作得到具有低频信息的低分辨率块;而具有高频信息的预测插值图像则通过原始高分辨率图像减去低分辨率图像的双线性插值图像获得,然后将图像做分块处理,得到具有高频信息的高分辨率块。这样,在训练数据库中就存在着低分辨率块和与之对应的高分辨率块的样本对了。训练完样本对后,进行锚点映射操作。在这一训练过程中,首先计算每一个样本与每一个锚点的欧式距离,然后找锚点的最近邻样本完成锚点映射这一训练过程。这样,离线的训练过程也就完成了。

在训练样本对的过程中,该方法只是简单的对高分辨率图像进行处理。这样,在得到低分辨率图像过程中会产生模糊效应,使得所产生的低分辨率块与实际图像不匹配,存在多对一的情况。在锚点映射过程,该方法仅仅通过寻找锚点的最近邻样本来完成锚点映射这一训练过程。这样,所得到的映射矩阵与实际映射矩阵之间会产生较大误差。因此,这种方法往往会使重建出来的图像丢失细节、模糊边缘。

【发明内容】

针对现有技术的不足,发明的目的在于提供一种基于卡通纹理分解的图像超分辨率重建方法,既能有效地避免因噪声产生的纹理,同时又能有效地保持图像内容,使图像的结构更加明显。

为了达到上述目的,本发明采用如下技术方案:

一种基于卡通纹理分解的图像超分辨率重建方法,包括以下步骤:

S1:离线训练过程包括两个训练过程:第一个训练过程通过K-奇异值分解算法训练出高低分辨率纹理字典对;第二个训练过程通过离线纹理锚点映射,找出样本对应的最近锚点,还要找出锚点对应的最近样本,认为每一对字典原子为一个锚点,代表一种纹理类型;

S2:将低分辨率输入图像进行卡通纹理分解;

S3:基于改进的全变分正则化方法重建出低分辨率卡通图像对应的高分辨率卡通图像;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安邮电大学,未经西安邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201710314024.8/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top