[发明专利]基于级联纠错机制的人体姿态估计方法有效
申请号: | 201710328383.9 | 申请日: | 2017-05-11 |
公开(公告)号: | CN107220596B | 公开(公告)日: | 2020-04-21 |
发明(设计)人: | 高新波;戴慧冰;何立火;路文;郭兆骐;窦睿翰 | 申请(专利权)人: | 西安电子科技大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/46;G06K9/62 |
代理公司: | 陕西电子工业专利中心 61205 | 代理人: | 王品华;朱红星 |
地址: | 710071 陕*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 级联 纠错 机制 人体 姿态 估计 方法 | ||
1.一种基于级联纠错机制的人体姿态估计方法,其特征在于:包括如下步骤:
(1)利用双向树结构模型对手腕以外的身体关节点进行定位;
(2)利用光流和粒子追踪相结合的方法初步预测手腕的位置;
(3)根据光流响应矩阵B的列数和设定的两个列光流阈值对预测的结果进行判断:
若光流响应矩阵B的第1列B(1)大于第1列的光流阈值1.5,且第1列到第200列的光流阈值B(1)…B(200)的值下降缓慢,使得第200列的光流响应B(200)大于第200列的光流阈值1,则判断定位的结果是手腕,即定位成功;
若光流响应矩阵B的第1列B(1)大于第1列的光流阈值1.5,且第1列到第200列的光流阈值B(1)…B(200)的值下降迅速,使得第200列的光流响应B(200)小于第200列的光流阈值1,则判断定位的结果是手肘,即定位失败,执行(4);
若光流响应矩阵B的第1列B(1)小于第1列的光流阈值1.5,则判定定位的结果是手肘,即定位失败,执行(4);
(4)利用双向树结构模型重新预测手腕的位置;
(5)对(4)预测的结果进行判断:
基于同一个人脸部和手部的肤色具有相似性的特性,用人脸区域的肤色直方图近似代替手腕区域的肤色直方图,即先使用脸部检测器准确定位人脸,再统计人脸区域的色度、亮度、饱和度HSV肤色直方图,即手腕区域的HSV肤色直方图,最后根据HSV肤色直方图计算手腕定位框内肤色区域面积的比例:
若手腕定位框内肤色区域面积的比例高于50%,则判断双向树结构模型定位的结果准确;
若手腕定位框内肤色区域面积的比例低于50%,判断双向树结构模型定位的结果错误,则把上一帧中已定位的手腕位置取作预测的手腕位置。
2.根据权利要求1所述的方法,其特征在于步骤(2)所述的利用光流和粒子追踪相结合的方法初步预测手腕的位置,按如下步骤进行:
2a)建立外观模型:
采用光流法fast flow处理原始的视频帧,得到一系列的光流图像,并采用主成分分析PCA方法对光流图像中的特定关节点手腕进行外观建模,其表示如下:
其中,i表示第i个关节点,It表示t时刻的观察图像序列,表示在It中第i个关节点的图像块,Ui表示部件i张成的子空间,dt表示图像块到子空间的距离,dw表示图像块在子空间内的距离,表示图像块由子空间生成的概率,表示图像块到子空间Ui距离为dt的概率,表示图像块在子空间Ui内距离为dw的概率,表示独立的高斯分布,μi表示均值,E表示单位矩阵,εE表示高斯噪声,表示由Ui的特征值所构成的矩阵;
2b)根据外观模型,计算出每个图像块可能是手腕的概率得到一系列候选的手腕位置;
2c)建立动态模型:
采用布朗运动对手腕的粒子追踪过程进行动态建模,其表示如下:
其中,θi表示对应仿射参数的方差,Pti表示在It中第i个关节点的状态变量,表示当t-1时刻手腕的状态变量为时t时刻手腕状态变量为Pti的概率;
2d)在外观模型和动态模型共同引导下,判断手腕在视频中的运动轨迹,再根据得到的运动轨迹从候选的手腕位置中确定最优的手腕位置。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710328383.9/1.html,转载请声明来源钻瓜专利网。