[发明专利]一种基于语境信息进行视点估计的方法在审
申请号: | 201710333739.8 | 申请日: | 2017-05-12 |
公开(公告)号: | CN107170012A | 公开(公告)日: | 2017-09-15 |
发明(设计)人: | 夏春秋 | 申请(专利权)人: | 深圳市唯特视科技有限公司 |
主分类号: | G06T7/73 | 分类号: | G06T7/73;G06K9/62 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 518057 广东省深圳市高新技术产业园*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 语境 信息 进行 视点 估计 方法 | ||
1.一种基于语境信息进行视点估计的方法,其特征在于,主要包括对象检测(一);定义对象关系(二);基于语境的视点分类(三);谨慎推理(四);视点估计(五)。
2.基于权利要求书1所述的对象检测(一),其特征在于,使用三个不同的视点感知检测器,其中两个是可变形部件模型(DPM)检测器的变形,其中模型的特定部分被学习从而对每个离散的视点进行分类,是通过卷积神经网络(CNN)执行基于最先进的基于学习表示方法实现的,该检测由一个更快的RCNN检测器组成,用于局部对象实例,结合微调的CNN Alexnet架构对预测对象边界框的视点进行分类。
3.基于权利要求书1所述的定义对象关系(二),其特征在于,首先对象和关系的表示方式给出定义,给定图像,使用视点感知对象检测器来收集一组对象假设O=(o1,o2,...,om)的感兴趣类别,每个对象假设oi被表示为元组oi=(ci,li,fi,si),其中ci表示对象的类别,li表示场景中对象边界框的中心位置,fi表示附加的对象相关特征(例如纵横比或尺寸),以及si表示由检测器报告的局部检测得分,另外每个假设都具有预测的离散观点αi,使用ov表示预测的对象假设的状态,o+表示对象假设被正确定位,即它们的预测边界框覆盖有效的对象实例,用o-代表错误的对象假设,同样使用αω指示预测视点的状态,α+和α-来表示对象的视点α的预测是否正确,最后用将预测的视点类与其状态相结合,即
4.基于权利要求书3所述的成对关系,其特征在于,将对象之间的关系用作语境信息的来源,从覆盖对象的边界框导出得到相对属性来定义成对关系,对象是投影在图像空间中的二维实体,对于每个对象oi,测量其与每个其他对象oj的相对位置(rxij,ryij),相对比例rsij和视点αj,生成一个关系描述符rij=(rxij,ryij,rsij,αj),将下面的成对关系的相对属性定义为:其中(xi,yi,wi,hi)定义了对象oi的边界框的中心、宽度和高度,产生由五个属性定义的成对关系,每个图像的成对关系的数量关于对象的数量具有二次生长,更确切地说,对于具有m个对象的图像,被提取出总共(m(m-1))个成对关系。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于深圳市唯特视科技有限公司,未经深圳市唯特视科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710333739.8/1.html,转载请声明来源钻瓜专利网。
- 信息记录介质、信息记录方法、信息记录设备、信息再现方法和信息再现设备
- 信息记录装置、信息记录方法、信息记录介质、信息复制装置和信息复制方法
- 信息记录装置、信息再现装置、信息记录方法、信息再现方法、信息记录程序、信息再现程序、以及信息记录介质
- 信息记录装置、信息再现装置、信息记录方法、信息再现方法、信息记录程序、信息再现程序、以及信息记录介质
- 信息记录设备、信息重放设备、信息记录方法、信息重放方法、以及信息记录介质
- 信息存储介质、信息记录方法、信息重放方法、信息记录设备、以及信息重放设备
- 信息存储介质、信息记录方法、信息回放方法、信息记录设备和信息回放设备
- 信息记录介质、信息记录方法、信息记录装置、信息再现方法和信息再现装置
- 信息终端,信息终端的信息呈现方法和信息呈现程序
- 信息创建、信息发送方法及信息创建、信息发送装置