[发明专利]多量化深度二值特征学习方法及装置有效

专利信息
申请号: 201710349641.1 申请日: 2017-05-17
公开(公告)号: CN107239793B 公开(公告)日: 2020-01-17
发明(设计)人: 鲁继文;周杰;段岳圻 申请(专利权)人: 清华大学
主分类号: G06K9/62 分类号: G06K9/62;G06K9/46;G06K9/38
代理公司: 11201 北京清亦华知识产权代理事务所(普通合伙) 代理人: 张润
地址: 10008*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 量化结果 图像 量化 二值编码 量化误差 特征学习 提取图像 学习效率 应用需求 有效解决 二值化 自编码 网络 学习
【说明书】:

发明公开了一种多量化深度二值特征学习方法及装置,其中,方法包括:提取图像的深度实值特征;通过K个自编码网络对图像的深度实值特征进行多量化,以得到量化结果;根据量化结果对图像的深度实值特征进行二值编码,以得到图像的二值特征。该方法可以有效解决二值化带来的量化误差问题,提高了学习的精确性,并且提高了学习效率,更加高效简单,更好地满足实际应用需求。

技术领域

本发明涉及计算机视觉与机器学习技术领域,特别涉及一种多量化深度二值特征学习方法及装置。

背景技术

视觉识别是计算机视觉领域的基本问题,能够广泛应用于多种视觉应用当中,例如人脸识别,物体识别,景物识别以及纹理识别等。作为一个经典的模式识别问题,视觉识别的主要步骤可以分为:特征提取和特征匹配。特征表示的目标是为每一张图片得到一个特征向量,使得同类图片的特征向量具有更强的相似性,而特征匹配则依据图片特征的相似性度量来识别图片的种类。由于自然环境下的物体光照、姿态、背景、视角和遮挡的差异较大,导致同一类物体之间的相似性小,不同物体之间的相似性可能较大,因此得到精确、高效的特征向量是视觉识别技术中最为关键的环节。

图像的特征提取主要分为两个方法:基于手工特征提取方法和基于特征学习方法。词袋模型是手工提取特征的代表性方法,主要有如下步骤:1)对图像提取关键点或关键区域;2)对关键点或关键区域提取局部特征描述符;3)为词袋模型建立字典;4)对局部特征描述符进行池化并提取直方图特征。其中,关键点或关键区域的提取以及提取特征描述符是视觉计算领域中的传统问题,由于局部不变特征对图像中的遮挡,尺度,光照等干扰因素具有较好的适应性,因此在近年来局部不变特征逐渐替代了全局特征而成为图像表征的主流方法,它们也成为了词袋模型中最为重要的两个环节。关键点或关键区域的提取能够找到图像中关键的稳定区域,这些局部区域随着图像的变化具有一定的稳定性和可重复性。而提取特征描述符则为找到的关键点或关键区域提供了具有高效鲁棒的描述。图像局部不变特征检测方法一般分为角点检测子、斑点检测子、区域检测子。基于特征学习的方法通过对训练集的学习,总结数据集蕴含的规律,学习视觉特征。

目前,深度学习的方法在视觉识别领域取得了极为出色的成果。随着互联网时代的快速发展,视觉感知领域已经进入了大数据时代,大数据一方面是数量上的大,另一方面是维度的大。深度学习方法能更好地利用视觉大数据学习出高效的视觉特征,因其不但关注了全局特征,更是利用了图像识别领域非常重要的局部特征,将局部特征抽取的算法融入到了神经网络中,从而有效完成视觉目标的特征表达。

虽然深度学习在视觉识别中取得了极佳的效果,但是目前深度学习的计算代价较大,在实际应用中存在瓶颈。二值特征学习技术具有计算、储存、匹配速度快的特点,深度二值特征学习在花费较低运算代价的同时获得较高的描述力,能够具备精确、高效的特点,满足实际应用需求。例如,DeepBit通过非监督的方式学习深度二值特征,在多个数据集上取得了出色的识别率。然而,现有的二值特征学习方法均使用符号函数进行二值化,从而会导致较大的量化损失。

发明内容

本发明旨在至少在一定程度上解决相关技术中的技术问题之一。

为此,本发明的一个目的在于提出一种多量化深度二值特征学习方法,该方法可以提高学习的精确性,并且提高学习效率。

本发明的另一个目的在于提出一种多量化深度二值特征学习装置。

为达到上述目的,本发明一方面实施例提出了一种多量化深度二值特征学习方法,包括以下步骤:提取图像的深度实值特征;通过K个自编码网络对所述图像的深度实值特征进行多量化,以得到量化结果;根据所述量化结果对所述图像的深度实值特征进行二值编码,以得到图像的二值特征。

本发明实施例的多量化深度二值特征学习方法,通过使用多量化进行二值化,并且利用K自编码网络来实施基于多量化的二值化,有效解决二值化带来的量化误差问题,提高了学习的精确性,并且提高了学习效率,更加高效简单,更好地满足实际应用需求。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于清华大学,未经清华大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201710349641.1/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top