[发明专利]一种参数最优的灰度图像增强处理系统有效

专利信息
申请号: 201710367543.0 申请日: 2017-05-23
公开(公告)号: CN107274357B 公开(公告)日: 2020-09-15
发明(设计)人: 刘兴高;蒋雅萍;王雅琳;阳春华;桂卫华 申请(专利权)人: 浙江大学
主分类号: G06T5/00 分类号: G06T5/00
代理公司: 杭州求是专利事务所有限公司 33200 代理人: 邱启旺
地址: 310058 浙江*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 参数 最优 灰度 图像 增强 处理 系统
【说明书】:

发明公开了一种参数最优的灰度图像增强处理系统,该系统由图像读入模块、图像预处理模块、参数寻优模块、图像增强与输出模块组成。系统首先将输入的灰度图像归一化,然后采用变换公式来增强灰度图像,变换公式中的参数通过改进的智能优化方法来确定。改进的优化方法加入了分群操作,能够防止优化过程陷入局部最优。同时,改进的优化方法中,更新公式中的惯性权重根据迭代状态自适应地改变,提高了算法的收敛性能。采用改进的智能优化方法,系统可以快速准确地确定最优参数,然后对灰度图像进行增强操作并最终输出。系统具有增强效果好,运行效率高的特点。

技术领域

本发明涉及图像处理技术领域,具体地,涉及一种参数最优的灰度图像增强处理系统。

背景技术

在图像处理中,图像增强技术对于提高图像的质量起着重要的作用。它通过有选择地强调图像中某些信息而抑制掉另一些信息,以改善图像的视觉效果,将原图像转换成一种更适合于人眼观察和计算机进行分析处理的形式。

灰度变换是图像增强的重要手段之一,通过扩大或改变灰度的值域范围,提高清晰度,使特征更加明显。它主要利用点运算来修正像素灰度,通常可分为线性变换、分段线性变换、非线性变换。线性变换对于灰度范围较窄的图像可以较好的改善图像,对于其他一些图像增强效果并不明显。分段线性变换对于目标和背景可以明确区别的图像,可以借助图像的灰度直方图来确定分段区间的灰度范围,但是一般为了准确确定变换区间,需要反复调整区间范围,很多情况下只能根据经验来确定。在某些情况下,应用非线性变换可以获得比线性变换更好的增强效果,如在图像过暗或过亮的情况下,利用指数变换或对数变换的效果可能比线性变换更好,然而它们容易使图像过增强或欠增强,同时参数也较难控制。

发明内容

为了克服目前用非线性变换增强灰度图像时参数难以控制的不足,本发明目的在于提供一种参数智能寻优的灰度图像增强处理系统。

本发明解决其技术问题所采用的技术方案是:一种参数最优的灰度图像增强处理系统,该系统由图像读入模块、图像预处理模块、参数寻优模块、图像增强与输出模块组成;其中:

图像读入模块读入一幅像素为M×N的灰度图像I,并将其输入图像预处理模块;灰度图像I={f(x,y)},其中x=1,2,…,M,y=1,2,…,N,f(x,y)代表像素点(x,y)的灰度值,f(x,y)∈[Lmin,Lmax],Lmin,Lmax分别表示读入的灰度图像的灰度值的最小值和最大值;

图像预处理模块对读入的灰度图像进行归一化处理后,将结果输入参数寻优模块;像素点(x,y)经过归一化以后的像素值为f'(x,y):

参数寻优模块初始化种群规模为Ns的粒子群,随机生成维度为2的粒子i的初始位置xi=(xi1,xi2)和初始速度vi=(vi1,vi2),i=1,2,...,Ns;其中xi1,xi2∈[0,10],vi1,vi2∈[-10,10],种群规模Ns=30~100;然后按以下方法进行迭代,初始时迭代计数t=0:

(1)按公式(2)对每个像素点进行图像增强变换:

其中,F(x,y)为像素点(x,y)经过增强变换以后的像素值;u为读入的灰度图像归一化后的灰度值,即u=f'(x,y),u∈[0,1];a,b为待优化的参数,用粒子的位置状态表示,a=xi1,b=xi2,a,b∈[0,10];q为灰度增强变换公式中的积分变量;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201710367543.0/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top