[发明专利]基于局部梯度三边的图域多尺度红外弱小目标检测方法有效

专利信息
申请号: 201710391310.4 申请日: 2017-05-27
公开(公告)号: CN107403134B 公开(公告)日: 2022-03-11
发明(设计)人: 秦翰林;曾庆杰;李佳;吴金莎;梁瑛;杨硕闻;延翔;王婉婷;程文雄;王春妹 申请(专利权)人: 西安电子科技大学
主分类号: G06V10/80 分类号: G06V10/80;G06V10/26;G06K9/62
代理公司: 西安志帆知识产权代理事务所(普通合伙) 61258 代理人: 侯峰;韩素兰
地址: 710071*** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 局部 梯度 三边 图域多 尺度 红外 弱小 目标 检测 方法
【说明书】:

发明公开了一种基于局部梯度三边的图域多尺度红外弱小目标检测方法,该方法为:将含弱小目标的红外图像转化成以节点和其边权关系为表示方式的局部梯度三边图信号;其次,根据图拉普拉斯矩阵的多尺度变换对局部梯度三边图信号进行多尺度分解,获得图信号在不同尺度下的低高频子带;再次,根据图信号的边权关系对每个尺度的高频子带进行局部加权,并取其中值作为新的中心节点系数,然后对局部加权后的高频子带作乘性融合;最后,对乘性融合后的高频子带进行自适应阈值分割,确定目标空间位置,输出检测结果。

技术领域

本发明属于红外图像处理领域,具体涉及一种基于局部梯度三边的图域多尺度红外弱小目标检测方法。

背景技术

红外弱小目标检测技术是红外成像探测领域中一项极为重要的关键技术,被广泛应用于自动目标识别中。当目标距离红外成像探测系统较远时,目标在所获得的红外图像中不仅没有明显的形状、结构、纹理等特征信息,而且成像面积相对较小,在图像中仅占几个至十几个像素。此外,成像环境的复杂恶劣性和探测器件性能的局限性,使得红外图像通常呈现低对比度、低信噪比、边缘模糊等欠佳的视觉效果;因此,如何从像质较差、信噪比有限、背景干扰复杂的红外图像中稳定有效地检测出弱小目标成为红外成像探测领域的主要技术难点。

针对复杂背景下红外弱小目标检测难问题,国内外科研学者已经开展了诸多研究工作,按所处理对象的不同,可将单帧弱小目标检测方法分为基于背景预测的间接检测法和基于目标特征的直接提取法;基于背景预测的检测方法通常采用性能较好的滤波器或滤波算子来对背景成分进行预测估计,通过尽可能多地从原始图像中提取背景杂波成分来间接分离出弱小目标;常用的经典方法有最大均值/中值滤波、形态学Top-Hat滤波、二维最小均方误差滤波TDLMS等,这些滤波方法的特点是设计简单,易于实现,不足之处在于对非平稳背景的自适应能力较差。

近年来,利用目标局部特性直接提取弱小目标的方法受到广大研究学者的青睐,受人类视觉系统机制的启示,Chen等提出一种基于目标与背景局部对比度差异的弱小目标检测方法,通过对输入图像建立对应局部对比度映射图,将目标与背景的局部强度差异放大,然后选择阈值来提取弱小目标;虽然这类方法检测效果良好,具有一定的鲁棒性,但对于处理存在高亮度、强边缘成分的复杂背景,仍会有较高的虚警率。

发明内容

鉴于此,本发明的主要目的在于提供一种基于局部梯度三边的图域多尺度红外弱小目标检测方法。

为达到上述目的,本发明的技术方案是这样实现的:

本发明实施例提供一种基于局部梯度三边的图域多尺度红外弱小目标检测方法,该方法为:将含弱小目标的红外图像转化成以节点和其边权关系为表示方式的局部梯度三边图信号;其次,根据图拉普拉斯矩阵的多尺度变换对局部梯度三边图信号进行多尺度分解,获得图信号在不同尺度下的低高频子带;再次,根据图信号的边权关系对每个尺度的高频子带进行局部加权,并取其中值作为新的中心节点系数,然后对局部加权后的高频子带作乘性融合;最后,对乘性融合后的高频子带进行自适应阈值分割,确定目标空间位置,输出检测结果。

上述方案中,所述将含弱小目标的红外图像转化成以节点和其边权关系为表示方式的局部梯度三边图信号具体为:

(一)生成以局部平均梯度表示目标和边缘信息的节点

具体方法是在原始图像的局部窗口内计算中心像素对邻域像素的平均梯度,并将该梯度像素点作为窗口的中心节点。按此方式遍历整幅图像,获得表示目标和边缘信息的节点,

式中,Ωk×k表示大小为k×k的局部窗口,I(i,j)和I(p,q)分别表示窗口内中心位置(i,j)和位置(p,q)处的像素灰度,为窗口内中心位置(i,j)的平均梯度,表示具有图像位置(i,j)处梯度值sij的节点,共N个;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201710391310.4/2.html,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top