[发明专利]一种利用虚拟样本训练神经网络诊断变压器故障的方法在审
申请号: | 201710455723.4 | 申请日: | 2017-06-16 |
公开(公告)号: | CN107194465A | 公开(公告)日: | 2017-09-22 |
发明(设计)人: | 张卫华 | 申请(专利权)人: | 华北电力大学(保定) |
主分类号: | G06N3/08 | 分类号: | G06N3/08 |
代理公司: | 北京科亿知识产权代理事务所(普通合伙)11350 | 代理人: | 汤东凤 |
地址: | 071000 河*** | 国省代码: | 河北;13 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 利用 虚拟 样本 训练 神经网络 诊断 变压器 故障 方法 | ||
技术领域
本发明涉及一种诊断变压器故障的方法,尤其涉及一种利用虚拟样本训练神经网络诊断变压器故障的方法,属于电力主设备故障诊断技术领域。
背景技术
电力变压器作为电力系统中最重要和最关键的电气设备之一,其运行的安全可靠性直接关系到电力系统的安全与稳定。为确保变压器的安全、经济运行,及时准确地诊断出变压器内部的潜伏性故障及其故障类型非常必要。
近年来,各国专家学者以及领域技术人员对变压器故障诊断问题进行了大量的研究工作,特别是采用神经网络技术诊断变压器故障的理论取得了很多卓有成效的研究成果。但变压器故障率相对较低,从实际工程中收集到的故障样本有限且样本在数据空间的分布极不均匀,而神经网络的泛化能力对训练样本的依赖性非常高,如果训练样本不能满足特征代表性和分布均匀性的要求将严重影响其故障诊断的准确率,因此,基于神经网络的变压器故障诊断相关研究大多停留在理论探讨范围,鲜有应用于工程实践当中。
虚拟样本是指在未知样本概率分布函数的情况下,利用所研究领域的先验知识,构造出一定数量的样本。油中溶解气体分析(Dissolved gas analysis,DGA)是对油浸式变压器进行故障诊断最方便、有效的手段之一。其中改良三比值法作为国标推荐的判断油浸式变压器故障类型的主要方法,在工程实践中有着广泛应用。该方法是在对大量故障样本进行统计分析后总结的经验,具有较高的故障诊断准确率,可以认为是规范化的领域专家知识。因此,利用该知识构造一定数量的虚拟样本训练神经网络可有效的解决神经网络训练样本集的构造问题。
发明内容
本发明要解决的技术问题是提供一种利用虚拟样本训练神经网络诊断变压器故障的方法。
为解决上述技术问题,本发明采用的技术方案是:
一种利用虚拟样本训练神经网络诊断变压器故障的方法,包括以下步骤:
步骤1:建立变压器各故障的特征区域:根据油中溶解气体的改良三比值法对变压器故障空间进行划分,得到各故障对应的特征区域;
步骤2:选择虚拟故障样本:在各故障的特征区域内按照正交表选取均匀分布的特征点作为训练样本集中的虚拟故障样本;
步骤3:添加实际故障样本:对实际故障样本采用改良三比值法进行诊断,将其中诊断错误的故障样本添加到所述训练样本集;
步骤4:构造BP神经网络:按照变压器故障空间的特征构造BP神经网络;
步骤5:训练BP神经网络:采用所述训练样本集对BP神经网络进行训练,并用实际故障样本检测所述BP神经网络的训练精度,并提高所述BP神经网络的训练精度;
步骤6:故障诊断:将待测样本输入到所述BP神经网络中进行故障诊断。
所述步骤1中,变压器故障模式分为:第一低温过热故障A1、第二低温过热故障A2、中温过热故障A3、高温过热故障A4、局部放电故障A5、电弧放电故障A6、电弧放电兼过热故障A7、低能放电故障A8、低能放电兼过热故障A9、第一未定义故障模式A10、第二未定义故障模式A11;第一低温过热故障指变压器的温度低于150℃;第二低温过热故障指变压器的温度介于150~300℃之间;中温过热故障指变压器的温度介于300~700℃之间;高温过热故障指变压器的温度高于700℃;第一未定义故障模式和第二未定义故障模式的编码分别为“000”和“010”;
以三组气体含量的比值为坐标轴建立变压器故障空间的,各比值的取值范围均为[0.01,10];各变压器故障模式对应的特征区域为均长方体区域。
所述步骤1中的特征区域用平面S1-S6划分,平面S1-S6为:
所述步骤2中的虚拟故障样本由输入向量I和期望输出向量D组成,输入向量I=(x,y,z)表示三组气体含量的比值,向量D=(D1,D2,…,D11)表示变压器发生的故障模式,其取值为:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华北电力大学(保定),未经华北电力大学(保定)许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710455723.4/2.html,转载请声明来源钻瓜专利网。