[发明专利]一种基于角特征加权的点云匹配方法在审

专利信息
申请号: 201710462330.6 申请日: 2017-06-19
公开(公告)号: CN107463871A 公开(公告)日: 2017-12-12
发明(设计)人: 石鹏;吕品;赖际舟;张竣涵;白师宇 申请(专利权)人: 南京航空航天大学
主分类号: G06K9/00 分类号: G06K9/00;G06K9/62
代理公司: 江苏圣典律师事务所32237 代理人: 贺翔
地址: 210016 江*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 特征 加权 匹配 方法
【说明书】:

技术领域

发明属于机器人自主导航技术领域,尤其涉及一种激光雷达Hector SLAM算法中基于角特征加权的点云匹配方法。

背景技术

同步定位与地图(SLAM,Simultaneous Localization and Mapping)技术是机器人自主导航技术领域中的一大研究热点。在无GPS(Global Positioning System)环境中,SLAM方法能够帮助机器人实现在陌生环境中的导航与定位,是机器人实际应用中的关键技术。

根据使用的传感器不同,目前主要的SLAM方法可以分为两类:激光雷达SLAM和视觉SLAM。相对于视觉SLAM中使用的视觉传感器——摄像头,激光雷达的使用不依赖于外界的光照条件,并且能够获取高精度的测距信息,可靠性更高。在2011年,Stefan Kohlbrecher在论文《A Flexible and Scalable SLAM System with Full 3D Motion Estimation》中提出Hector SLAM方法,Hector SLAM是目前最为广泛应用的一种激光雷达SLAM法,该方法只需要激光雷达数据,不需要里程计等额外传感器,能够同时应用于空中无人机和地面无人车中,且具有较好的定位精度,运算耗时少。

在激光雷达SLAM方法中,根据激光雷达采集的点云信息进行实时定位与地图构建,其中激光点云的匹配是一个关键问题。Hector SLAM中通过概率模型将激光点云与已构建的地图进行全局匹配,具有较好的定位与构图效果;但是,在特征稀疏环境中该匹配方法的误差较大。

发明内容

针对于上述现有技术的不足,本发明的目的在于提供一种基于角特征加权的点云匹配方法,以解决激光雷达Hector SLAM在特征稀疏环境中定位与构图效果差的问题;本发明提高了激光雷达Hector SLAM中点云与已构建的地图之间的匹配精度。

为达到上述目的,本发明的技术方案为:

一种基于角特征加权的点云匹配方法,包括步骤如下:

(1)对激光点云数据进行预处理,根据不同型号激光雷达的测距有效范围,将测距信息超出该有效范围的数据剔除;

(2)对激光点云进行角特征检测;

(3)根据步骤(2)中得到的角特征,对激光点云数据进行分类;

(4)计算激光点云中每类激光点数据的匹配权值;

(5)利用高斯牛顿迭代方法进行激光雷达的点云匹配计算。

优选地,上述的步骤(3)中对激光点云数据进行分类的方法如下:步骤(2)中得到角特征的数量记为ncorner,检测每个角特征的角点,以这些角点为中心,cj为描述第j个角特征所用的激光点数量,j=1,2,…ncorner,选取cj个激光点为一类激光点数据,记为gj,j=1,2,…ncorner,描述第j个角特征,其中cj根据不同情况选取合适的数值,且以此方法将描述每个角特征的激光点分别划分为一类激光点数据;剩余的其它所有的激光点为未描述角特征的一类激光点数据,记为g0,其激光点的数量记为c0

优选地,上述的步骤(4)中计算每类激光点数据的匹配权值的方法如下:经过步骤(1)预处理后激光点的数量为n,描述角特征的激光点数据的权值大于1,其余激光点的权值不大于1;其中第gj类激光点数据的权值为其中,j=1,2,…ncorner,k为比例因子,根据不同情况选取合适的数值,且k>1;第g0类激光点数据的权值为

优选地,上述的步骤(5)中,建立如下基于角特征加权的点云匹配模型,基于角特征加权的点云匹配目标函数如下:

其中每个激光点数据的权值为λi,i=1,2,…n,ξ为激光雷达所在载体的状态,包括在激光雷达SLAM全局坐标系下的航向角ψ和位置坐标(px,py),T表示转置,其具体表达式如下:

ξ=(ψ px py)T

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京航空航天大学,未经南京航空航天大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201710462330.6/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top