[发明专利]基于集成学习的果蔬高光谱品质检测方法有效
申请号: | 201710465336.9 | 申请日: | 2017-06-19 |
公开(公告)号: | CN109145685B | 公开(公告)日: | 2021-11-12 |
发明(设计)人: | 海兵帅 | 申请(专利权)人: | 南京农业大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62;G01N21/25 |
代理公司: | 南京天华专利代理有限责任公司 32218 | 代理人: | 徐冬涛 |
地址: | 211225 江苏省南京市溧*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 集成 学习 果蔬高 光谱 品质 检测 方法 | ||
本发明公开了一种基于集成学习的果蔬高光谱品质检测方法,基于集成学习的果蔬高光谱品质检测方法主要是利用集成学习方法对现有高光谱品质检测算法进行融合,并建立果蔬品质的无损检测方法。该方法首先建立基于bagging+adaboost的集成检测框架,对多种特征波段优选方法,以及光谱数据和品质数据的相关分析方法进行融合,然后在此基础上利用实测的果蔬光谱和品质数据进行训练,得到可用于无损品质检测的预测模型。
技术领域
本发明属于果蔬检测领域,具体是一种基于集成学习的果蔬高光谱品质检测方法。
背景技术
高光谱成像系统能获取波长400-1000nm内连续的光谱曲线,波长数众多(有几百甚至上千波长组成),有很多信息是重复的或者是无用信息,甚至是影响到数据模型结果的噪声数据,这对数据分析中模型的准确度、分析的速度都非常不利,也会影响便携式仪器的开发。同时,因为光谱数据信息本身冗余,高光谱成像通常是严重重叠在一起,以致特征吸收峰不明显。因此,通常的做法是采用一定的方法寻找到对于建模有效的波长变量,删除冗余变量,减少波长变量个数,优化模型,提升模型预测精确,我们称为特征变量选择。
特征波长选择方法主要有无信息变量消除法、连续投影算法、遗传算法等,当前相关分析的方法如基于线性的偏最小二乘,多元线性回归及基于非线性的神经网络和支持向量机的,以往都是讲各种单一算法进行对比,优选性能最优提取及相关分析算法来进行作为最终算法。针对采集的数据集某种单一算法表现好,但是如果数据集的改变,相应的最优提取方法也可能随之改变。如果处理预测信息复杂的话,单一特征提取算法出现错误的概率就会越来越大,这样的模型适应性比较弱,现实当中复杂的。
现有的技术方案有如:无信息变量消除法、连续投影算法、遗传算法都是本专利下的子方法,本专利发明将所有的自算法进行融合,集成多个算法成的特征提取器具有比成员提取方法更强的泛化能力。来预测苹果内部品质,提升预测模型性能,稳定性,准确性。
高光谱无损检测品质分析当中,如预测苹果的糖度、硬度、水分等内部品质高光谱检测。针对采集的数据集某种单一算法表现好,但是如果数据集的改变,相应的最优提取和相关性分析方法也可能随之改变。在其研究领域,虽然有很多不同的方法来预测各自领域对象的内部信息,通过对比相关的预测算法。一般来说,这些方法预测得到的结果不是非常稳定和强大的。存在单一性,并不稳定。若同一研究对象下数据的改变可能导致分析结果不同,如果处理预测信息复杂的话,单一特征提取算法出现错误的概率就会越来越大,这样的模型适应性比较弱,现实当中复杂的。学习一个具有较强泛化能力的特征提取,相关性分析技术也成为一个艰巨的任务。
发明内容
本发明根据每种特征提取算法和相关性分析算法的设计原理不同,考虑添加集成学习的技术,集成多个算法成的特征提取器具有比成员提取方法更强的泛化能力。来预测苹果内部品质,提升预测模型性能,稳定性,准确性。
技术方案:一种基于集成学习的果蔬高光谱品质检测方法,开始,选择样本并投入高光谱数据及其品质数据,设置并选取若干特征提取的方法,将方法添加到集成学习框架中去,进行分别特征提取;然后由异态集成学习中元学习法针对回归的思想,将每个算法得到的优选波段序号进行加权融合,最终作为融合后的最终提取波段;其次基于bagging+adaboost框架下的多算法高光谱与品质相关分析模型的建立,根据基于集成学习的高光谱和品质相关性分析方法,投入特征高光谱数据、蔬果品质数据;训练数据的设置,默认为训练集为80%,测试集为20%;设置bagging随机抽取比例为80%-90%,将高光谱数据和品质数据作为原始数据集,将原始数据集进行若干次随机抽样得到若干次新的数据集,设置并选取若干回归分析方法,将方法添加到bagging+adaboost框架中去,依次对新的数据集进行分别回归建模分析,最后根据评价因子得到最终预测模型。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京农业大学,未经南京农业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710465336.9/2.html,转载请声明来源钻瓜专利网。