[发明专利]一种电子产品激活量预测方法及一种服务器集群有效
申请号: | 201710526989.3 | 申请日: | 2017-06-30 |
公开(公告)号: | CN107248094B | 公开(公告)日: | 2020-12-18 |
发明(设计)人: | 李冬阳 | 申请(专利权)人: | 联想(北京)有限公司 |
主分类号: | G06Q30/02 | 分类号: | G06Q30/02;G06F17/18 |
代理公司: | 北京金信知识产权代理有限公司 11225 | 代理人: | 黄威;邓玉婷 |
地址: | 100085 北京市*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 电子产品 激活 预测 方法 服务器 集群 | ||
1.一种电子产品激活量预测方法,其特征在于,包括:
获取第一激活量数据和影响第一激活量数据的至少一个第一因子数据;
对所述第一激活量数据和所述至少一个第一因子数据分别进行时间序列化;
基于时间序列化后的所述至少一个第一因子数据,对时间序列化后的所述第一激活量数据进行时间规律拆解,得到第二激活量数据,所述第二激活量数据包括电子产品激活量未受所述至少一个第一因子数据影响情况下随时间的变化趋势数据;
判断所述变化趋势数据是否具有时间规律;
如果所述变化趋势数据具有时间规律,将所述变化趋势数据进行特征化处理生成第二因子数据,将所述至少一个第一因子数据与第二因子数据输入预设模型进行学习,以对预定时间的电子产品激活量进行预测。
2.根据权利要求1所述的方法,其特征在于,还包括,
如果所述变化趋势数据不具有时间规律,则将所述至少一个第一因子数据输入预设模型进行学习,以对预定时间的电子产品激活量进行预测。
3.根据权利要求1或2所述的方法,其特征在于,所述至少一个第一因子数据包括价格因子数据、市场活动因子数据、产品质量因子数据、舆论因子数据、竞争产品因子数据中的一个或多个。
4.根据权利要求3所述的方法,其特征在于,所述舆论因子数据包括情感指数因子数据,所述情感指数因子数据基于正面舆论评价信息数量以及负面舆论评价信息数量确认。
5.根据权利要求1或2所述的方法,其特征在于,对所述至少一个第一因子数据进行时间序列化包括对价格因子数据进行时间序列化,并且在对所述价格因子数据进行时间序列化前,对所述价格因子数据进行离散化。
6.根据权利要求1或2所述的方法,其特征在于,将所述变化趋势数据进行特征化处理包括,将所述变化趋势数据的依赖时长构造成一维特征或多维特征作为所述第二因子数据。
7.根据权利要求1所述的方法,其特征在于,所述第一因子数据与所述第二因子数据的权重相等。
8.一种服务器集群,包括至少一个处理器、至少一个存储器,所述至少一个存储器能够存储被所述至少一个处理器处理的指令,所述至少一个处理器配置为执行所述指令以:
获取第一激活量数据和影响第一激活量数据的至少一个第一因子数据;
对所述第一激活量数据和所述至少一个第一因子数据分别进行时间序列化;
基于时间序列化后的所述至少一个第一因子数据,对时间序列化后的所述第一激活量数据进行时间规律拆解,得到第二激活量数据,所述第二激活量数据包括电子产品激活量未受所述至少一个第一因子数据影响情况下随时间的变化趋势数据;
判断所述变化趋势数据是否具有时间规律;
如果所述变化趋势数据具有时间规律,将所述变化趋势数据进行特征化处理生成第二因子数据,将所述至少一个第一因子数据与第二因子数据输入预设模型进行学习,以对预定时间的电子产品激活量进行预测。
9.根据权利要求8所述的服务器集群,其特征在于,所述至少一个处理器配置为进一步执行所述指令以:
如果所述变化趋势数据不具有时间规律,则将所述至少一个第一因子数据输入预设模型进行学习,以对预定时间的电子产品激活量进行预测。
10.根据权利要求8或9所述的服务器集群,其特征在于,所述至少一个第一因子数据包括价格因子数据、市场活动因子数据、产品质量因子数据、舆论因子数据、竞争产品因子数据中的一个或多个。
11.根据权利要求10所述的服务器集群,其特征在于,所述舆论因子数据包括情感指数因子数据,所述情感指数因子数据基于正面舆论评价信息数量以及负面舆论评价信息数量确认。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于联想(北京)有限公司,未经联想(北京)有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710526989.3/1.html,转载请声明来源钻瓜专利网。
- 上一篇:一种房地产销售管理系统
- 下一篇:推荐方法及装置