[发明专利]一种基于深度神经网络的织物瑕疵检测方法在审
申请号: | 201710529838.3 | 申请日: | 2017-07-02 |
公开(公告)号: | CN107316295A | 公开(公告)日: | 2017-11-03 |
发明(设计)人: | 何志勇;张浩;朱翚;林嵩 | 申请(专利权)人: | 苏州大学 |
主分类号: | G06T7/00 | 分类号: | G06T7/00;G06K9/62 |
代理公司: | 苏州创元专利商标事务所有限公司32103 | 代理人: | 陶海锋 |
地址: | 215123 江苏省*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 深度 神经网络 织物 瑕疵 检测 方法 | ||
1.一种基于深度神经网络的织物瑕疵检测方法,其特征在于:包括如下步骤,
(1)、搭建图像采集系统,将采集到的图像送至计算机;
(2)、采用图像变换和噪声扰动的方式增加织物样本图像数据,将增强后的织物图像作为训练样本,训练样本中包含不同织物的正常和缺陷图像,并对图像进行标定,’0’代表正常样本,’1’代表缺陷样本;
(3)、设计深度神经网络,所述深度神经网络包括9层,一层输入层、三层卷积层、三层池化层以及两层全连接层,其中输入层为获取的织物图像,卷积层用于特征提取,不同卷积层由不同数目的特征图组成,池化层采用max-pooling的方式对上一卷积层进行下采样,经过多层卷积和池化操作,将获取的特征向量输入到全连接层,得到最终输出向量,并使用softmax分类器进行分类;
(4)、设置参数并对所述深度神经网络进行初始化,将训练样本作为输入数据送入到所述深度神经网络进行训练,在网络训练完成之后,保存网络模型;
(5)、将输入的新织物样本送入网络模型进行检测,分类器输出的最大分量的位置为检测结果,将检测结果与定义的标签进行比较,检测结果输出为0时,表示图像为正常图片,结果为1时,则表示图像中存在缺陷;
上述步骤(3)中,对所述深度神经网络进行优化,采用softmax分类器的交叉熵函数作为目标函数,在后向传播中使用mini-batch梯度下降法来优化目标函数,即遍历完一个batch的样本就计算梯度和更新参数,其中目标函数定义如下:
其中1{.}是示性函数,即大括号内的表达式值为真的时候输出1,否则为0,m是训练样本总数,y(i)是第i个样本实际的标签值,是样本i分类为类别j的概率,即是经过softmax分类器处理之后的输出,
使用mini-batch梯度下降法进行优化的计算方式如下:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于苏州大学,未经苏州大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710529838.3/1.html,转载请声明来源钻瓜专利网。
- 上一篇:一种图像中雨雾同步合成、去除的方法和装置
- 下一篇:一种即时通信客户端