[发明专利]一种电动汽车动力电池SOC智能预测装置有效
申请号: | 201710548650.3 | 申请日: | 2017-07-07 |
公开(公告)号: | CN107436409B | 公开(公告)日: | 2019-12-31 |
发明(设计)人: | 马从国;王建国;王业琴;韩黎;洪佳乐;王浩;杨玉东;陈亚娟;周艳;孙慧敏 | 申请(专利权)人: | 淮阴工学院 |
主分类号: | G01R31/388 | 分类号: | G01R31/388;G01R31/367;B60L58/12 |
代理公司: | 32223 淮安市科文知识产权事务所 | 代理人: | 李锋 |
地址: | 223005 江苏*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 电动汽车 动力电池 soc 智能 预测 装置 | ||
本发明公开了一种电动汽车动力电池SOC智能预测装置,其特征在于:所述智智能预测装置包括电池参数采集平台和电池SOC预测系统,电池参数采集平台用于采集汽车动力电池组电压、电流、温度和环境温度的实时参数,电池SOC预测系统通过采集的实时参数来预测电池SOC值;电池SOC是一个非线性的、延时的、多变量耦合和复杂的实时系统,实时性要求非常高,本发明有效解决了常规的预测装置难以取得电池SOC预测精度理想效果的问题。
技术领域
本发明涉及电池检测设备技术领域,具体涉及一种电动汽车动力电池SOC智能预测装置。
背景技术
实现电动汽车电池的荷电状态(State of Charge,SOC)准确估计是保证电动汽车可靠运行的前提,也是电池组使用和维护的重要依据,对电动汽车的推广和发展具有至关重要的意义。目前,常用的SOC的估测方法主要有:安时积分法、开路电压法、卡尔曼滤波法、神经网络法等。安时积分法通过计算电流对时间的积分得到电池组的消耗电量,进而求得剩余电量,但其本质上是一种开环预测,纯积分环节的存在使得误差随时间的推移而增大。开路电压法通过检测电池的开路电压得到其剩余电量,要求电池在不对外供电的状态下长时间静置,不适合在线的实时测量。卡尔曼滤波法需要建立电池的内部模型得到状态方程,对电池模型的精度要求较高,在实际应用中具有一定的局限性。神经网络法根据建立的网络模型利用大量的样本数据进行训练学习可以获得较好的精度,但网络对初始权值的选择较为灵敏,一般收敛到初始值附近的局部最小值,初始值的改变将影响网络的收敛速度和精度。国内时玮等研究磷酸铁锂电池SOC估算方法,刘浩等研究纯电动汽车用锂离子电池SOC估算方案。电动汽车电池SOC是一个非线性的、延时的、多变量耦合的和复杂的实时系统,实时性要求非常高,常规的控制方法难以取得理想效果,根据传统汽车电池SOC估算方法的缺点,本发明专利设计一种电动汽车动力电池SOC智能预测装置,实现对电动汽车电池参数的电压、电流和温度等参数的采集和对电动汽车电池SOC精确预测。
发明内容
本发明提供了一种电动汽车动力电池SOC智能预测装置,本发明有效解决了电池SOC是一个非线性的、延时的、多变量耦合和复杂的实时系统,,实时性要求非常高,常规的控制方法难以取得理想效果的问题。
本发明通过以下技术方案实现:
一种电动汽车动力电池SOC智能预测装置,其特征在于:所述智能预测装置包括电池参数采集平台和电池SOC预测系统,电池参数采集平台用于采集汽车动力电池组电压、电流、温度和环境温度的实时参数,电池SOC预测系统通过采集的实时参数来预测电池SOC值;
所述电池参数采集平台由电流传感器、电压检测电路、电池组温度传感器、环境温度传感器、负载和测控单元组成,其中测控单元包括单体电池数据采集模块、CPU处理器、触摸屏、RS232接口、CAN接口、A/D转换单元和均衡器,该电池参数采集平台采集电池组电压与电流、电池温度和环境温度,并通过CAN总线接口与电动汽车控制系统进行信息交互;
所述电池SOC预测系统包括GM(1,1)电压预测模型、GM(1,1)电流预测模型、GM(1,1)温度预测模型、SOM神经网络分类器、多个RBF模糊神经网络估计模型和GM(1,1)内阻变化预测模型、GM(1,1)温度变化预测模型、ANFIS补偿估计模型和ARIMA动态预测模型组成,利用SOM神经网络分类器对影响电池SOC值的GM(1,1)电压预测模型输出值、GM(1,1)电流预测模型输出值、GM(1,1)温度预测模型输出值的电池预测电压、预测电流和预测温度样本参数进行分类,每类样本特征参数输入对应RBF模糊神经网络估计模型,RBF模糊神经网络估计模型输出、GM(1,1)环境温度变化预测模型输出值和GM(1,1)电池内阻变化预测模型输出值作为ANFIS补偿估计模型的输入,一个时间段内RBF模糊神经网络估计模型输出值减去ANFIS补偿估计模型输出值的k个差作为ARIMA动态预测模型的输入,ARIMA动态预测模型输出作为电池SOC预测值。
本发明进一步技术改进方案是:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于淮阴工学院,未经淮阴工学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710548650.3/2.html,转载请声明来源钻瓜专利网。
- 上一篇:可调式转子检测装置
- 下一篇:一种电量控制方法、装置、设备和存储介质