[发明专利]融合智能通讯信息的混合动力汽车未来工况预测系统有效
申请号: | 201710586344.9 | 申请日: | 2017-07-18 |
公开(公告)号: | CN107284452B | 公开(公告)日: | 2018-04-10 |
发明(设计)人: | 曾小华;王越;朱丽燕;宋大凤;张学义;黄海瑞;王振伟;孙可华 | 申请(专利权)人: | 吉林大学 |
主分类号: | B60W50/00 | 分类号: | B60W50/00 |
代理公司: | 长春市恒誉专利代理事务所(普通合伙)22212 | 代理人: | 李荣武 |
地址: | 130012 吉*** | 国省代码: | 吉林;22 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 融合 智能 通讯 信息 混合 动力 汽车 未来 工况 预测 系统 | ||
技术领域
本发明涉及一种汽车行驶工况预测系统,特别涉及一种融合智能通讯信息的混合动力汽车未来工况预测系统,属于智能交通技术领域。
背景技术
行驶工况是混合动力汽车能量管理策略设计考虑的重要因素之一,对提高整车燃油经济性有着至关重要的作用。开发对未来控制时域内工况进行合理精确预测的系统,进而结合预测能量管理算法实现混合动力系统实时最优控制,已成为混动汽车智能能量管理策略的有效方法。目前行驶工况预测的主要研究是根据车辆自身行驶一定周期后的工况数据后,结合建立的预测模型作出对车辆未来工况的预测。由于依赖车辆运行一定周期的历史数据积累之后作出的工况预测,未来工况预测结果存在滞后性、准确率低,参考性差等问题。如2013年8月14日申请公布的发明专利:申请公布号:CN 103246943 A,基于马尔可夫链的汽车运行工况多尺度预测方法,该方法建立汽车运行工况的马尔可夫链预测模型,根据汽车运行工况的历史信息,通过极大似然估计计算出状态转移矩阵;运用马尔可夫链蒙特卡洛模拟方法,根据获得的状态转移矩阵进行不同时间尺度的汽车运行工况预测;再将不同尺度预测结果在原数据频率下融合,获得汽车运行工况多尺度预测结果。该方法基于汽车自身运行工况的历史信息,通过建立马尔可夫链预测模型完成对汽车工况的多尺度预测,由于汽车自身运行工况的历史信息的对未来工况预测的结果实时性差,且工况预测模型预测结果缺少对误差的深度分析的,不能保证预测模型和预测结果两者预测精度,因此未来工况预测结果存在滞后性、准确率低,参考性差等问题。
发明内容
本发明的目的是提供一种能准确的获取与本车未来工况信息最为接近的前车工况信息,并以此为基础进行未来工况预测,所得预测结果具有实时性好、准确率高,可参考性强的融合智能通讯信息的混合动力汽车未来工况预测系统,其技术内容为:
融合智能通讯信息的混合动力汽车未来工况预测系统,包括智能通讯系统、工况数据采集单元、未来工况预测模块和预测结果输出模块,其特征在于:该工况预测系统还包括工况数据筛选模块、行驶工况划分模块、采样时间反馈单元、在线预测结果分析模块和预测结果在线修正模块;
所述的智能通讯系统包括V2V车车通讯系统、V2I车路通讯系统和车载定位系统,将获取的信息传递给工况数据采集单元,所述的V2V车车通讯系统用于获取周围车辆行驶状态信息,所述的V2I车路通讯系统用于获取交通路况信息,所述的车载定位系统用于获取周围及当前车辆位置信息和行驶路径信息;
所述的工况数据采集单元按照采样时间反馈单元提供采样时间长度确定工况数据的采样周期,并将采样周期内的工况数据信息传递给工况数据筛选模块;
所述的工况数据筛选模块对工况数据采集单元的数据进行筛选,确定最佳的工况数据获取途径,并将经过最佳筛选途径获取的数据信息输入至行驶工况划分模块;
所述的行驶工况划分模块对获取的行驶工况数据进行行驶工况划分,结合行驶工况路网和交通信息确定划分时间窗口长度,并将所划分时间窗口内的工况数据送入未来工况预测模块;
所述的采样时间反馈单元接收行驶工况划分模块确定的划分时间窗口长度,并以此作为采样周期送回工况数据采集单元,实现对工况数据采集单元采样时间的反馈调整控制;
所述的未来工况预测模块包括工况数据处理模块、样本数据单元、未来工况预测模型和预测模型输出单元,所述的工况数据处理模块接收行驶工况划分模块划分时间窗口内的工况数据,并对数据进行滤波、归一化处理后传递给样本数据单元,所述的样本数据单元确定预测模型的输入数据类型后传递给未来工况预测模型,所述的未来工况预测模型根据样本数据单元的数据作出在线预测结果,并将预测结果送入预测模型输出单元;
所述的未来工况预测模型包括最小二乘支持向量机(LS-SVM)工况预测模型、自回归滑动平均误差修正模型(ARMA)和预测模型精度判断单元,未来工况预测模型的构建通过样本数据单元确定样本训练数据,对建立的最小二乘支持向量机(LS-SVM)工况预测模型和自回归滑动平均误差修正模型(ARMA)进行离线训练,并利用预测模型精度判断单元对最小二乘支持向量机(LS-SVM)工况预测模型和自回归滑动平均误差修正模型(ARMA)做出的预测结果进行预测精度判断,当不满足预测精度要求时,进一步调整自回归滑动平均误差修正模型(ARMA),直到预测结果满足预测精度要求时,从而最终确定最小二乘支持向量机(LS-SVM)工况预测模型与自回归滑动平均误差修正模型(ARMA)相结合带有预测模型精度判断的未来工况预测模型;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于吉林大学,未经吉林大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710586344.9/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种神经内科智能手术刀消毒保养设备
- 下一篇:一种枣糕切片包装机
- 信息记录介质、信息记录方法、信息记录设备、信息再现方法和信息再现设备
- 信息记录装置、信息记录方法、信息记录介质、信息复制装置和信息复制方法
- 信息记录装置、信息再现装置、信息记录方法、信息再现方法、信息记录程序、信息再现程序、以及信息记录介质
- 信息记录装置、信息再现装置、信息记录方法、信息再现方法、信息记录程序、信息再现程序、以及信息记录介质
- 信息记录设备、信息重放设备、信息记录方法、信息重放方法、以及信息记录介质
- 信息存储介质、信息记录方法、信息重放方法、信息记录设备、以及信息重放设备
- 信息存储介质、信息记录方法、信息回放方法、信息记录设备和信息回放设备
- 信息记录介质、信息记录方法、信息记录装置、信息再现方法和信息再现装置
- 信息终端,信息终端的信息呈现方法和信息呈现程序
- 信息创建、信息发送方法及信息创建、信息发送装置