[发明专利]一种用于单目立体视觉自标定的异型标定块及标定方法在审
申请号: | 201710604098.5 | 申请日: | 2017-07-21 |
公开(公告)号: | CN107339938A | 公开(公告)日: | 2017-11-10 |
发明(设计)人: | 高金刚;刘智勇;张爽;王华;侯岱双;王文忠;王守龙;黄金;卢廖辉;王寅凯;安峻啸 | 申请(专利权)人: | 长春工程学院 |
主分类号: | G01B11/00 | 分类号: | G01B11/00;G01B11/24;G06T7/80 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 130012 吉林*** | 国省代码: | 吉林;22 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 用于 立体 视觉 标定 异型 方法 | ||
技术领域
本发明为一种用于单目立体视觉自标定的异型标定块及标定方法,属于单目立体视觉自标定领域。
背景技术
随着机器视觉、数字图像处理技术的不断发展,提高相机畸变矫正及测量的精度,对于机器视觉在线检测显得至关重要,当前针对单目CCD相机应用于3D测量时,大都是利用三坐标测量机、经纬仪等设备去做立体标定,方法复杂,效率低,标定精度不高。目前,并未见到基于异型标定块的单目立体视觉自标定方法。
发明内容
本发明的目的是为了解决单目立体视觉自标定存在精度差、效率低等不足,我们提出了一种用于单目立体视觉自标定的异型标定块及标定方法。
为了实现上述目的,本发明是通过以下技术方案实现的。
一种用于单目立体视觉自标定的异型标定块及标定方法,包括异型块形状、异型块标定点位置及标定方法。
进一步地,为了提高标定精度及质量,需要设定N级阶梯型异型标定块及异型标定块大小,以满足实际标定精度要求。
进一步地,为了准确获取异型块标定点位置,将线激光光束垂直投影到异型块异型面上,通过单目CCD相机捕捉此时异型块与线激光投射光束之间的图像,通过相关图像处理算法,对异型标定块拐点位置坐标进行提取,并将除边缘两点以外的所有拐点处的点,作为标定点位置,并同时确定标定原点位置。
进一步地,为了获取单目CCD相机立体视觉标定参数,首先利用标定板对单目CCD相机进行畸变矫正,其次利用异型标定块标定点物理坐标及对应标定点在单目CCD相机图像中的像素坐标,采用基于神经网络算法或非线性算法,对单目CCD相机立体视觉标定参数进行获取,具体步骤如下:
1)首先利用标定板对单目CCD相机进行参数矫正,通过构造合适的畸变矫正模型,进行单目CCD相机畸变参数矫正。
2)其次,利用矫正后的单目CCD相机拍摄异型标定块,捕捉标定块上的若干个标定点的物理坐标及像素坐标,即P1(2,4)、P2(4.5,7)、P3(7,7)、P4(8.5,10)、P5(11.5,10)、P6(13,7)、P7(15.5,7)、P8(18,4),分别对应于像素坐标P′1(501,2061)、P′2(953,1521)、P′3(1413,1521)、P′4(1685,977)、P′5(2229,977)、P′6(2497,1523)、P′7(2953,1521)、P′8(3413,2062),分别将这若干个标定点进行统一。
3)通过对标定点像素坐标及物理坐标的综合分析,构造合适的神经网络算法及非线性算法模型来分析其两者之间存在的标定参数关系。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于长春工程学院,未经长春工程学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710604098.5/2.html,转载请声明来源钻瓜专利网。