[发明专利]基于深度学习的医学图像肺结节检测方法在审
申请号: | 201710652335.5 | 申请日: | 2017-08-02 |
公开(公告)号: | CN107492095A | 公开(公告)日: | 2017-12-19 |
发明(设计)人: | 姬红兵;王厚华;张文博;朱志刚;曹奕 | 申请(专利权)人: | 西安电子科技大学 |
主分类号: | G06T7/00 | 分类号: | G06T7/00;G06K9/62 |
代理公司: | 陕西电子工业专利中心61205 | 代理人: | 王品华,朱红星 |
地址: | 710071 陕*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 深度 学习 医学 图像 结节 检测 方法 | ||
技术领域
本发明属于图像处理技术领域,涉及一种医学图像肺结节检测方法。可用于计算机辅助诊断系统。
背景技术
肺结节是肺癌最重要的早期征象之一,根据肺结节的病变特征能推断出肺部病灶的病变特性。所以,对肺部疾病患者进行及早的肺结节检测和治疗是降低肺癌死亡率的关键措施。肺癌因其高发病率、高死亡率已成为癌症中最为致命的肿瘤疾病,随着人们生活习惯的改变和环境的日益恶化,肺癌人群日益增加,社会对此关注度日益增加。结合肺结节的医学特性,利用深度学习技术对医学图像进行处理和研究,能为医生提供有用的参考信息,辅助医生及时地对肺部疾病患者做出准确的诊断。
现有的肺癌计算机辅助诊断主要流程包括:肺结节的特征提取和肺结节的分类识别。在特征提取环节,对肺结节的形态学特征、纹理特征、局部特征等方面的病理特征和图像信息进行人工提取特征。人工提取特征的步骤繁琐,效率低。分类识别方法通常是基于统计学得到的,例如贝叶斯分类算法、人工神经网络、模糊聚类等。这些方法共同的理论基础是传统统计学,均属于浅层结构模型,通常需要强的先验知识或者需要通过不同的特征尝试和参数选择才能得到满意的特征,给整个分类问题带来复杂性,导致现有的医学图像肺结节的检测速度较慢、精度较低。
发明内容
本发明的目的在于针对上述现有技术的不足,提出一种基于深度学习的医学图像肺结节检测方法,以提高肺结节图像的检测精度。
本发明的技术方案设计这样实现的:
一.技术原理
卷积神经网络其权值共享的特点可降低网络模型的复杂度,减少权值的数量,避免传统算法中复杂的特征提取和数据重建过程。卷积神经网络对平移、比例缩放和倾斜具有高度不变性,训练模型不需要使用任何人工特征,可以自动探索图像所隐含的特征。本发明从原始的像素出发通过卷积神经网络来自动发现医学图像中隐藏的特征,通过不断学习后得到有效特征。
为了防止现有的带标签的医学图像数据量较少和网络结构的过拟合,本发明引入随机数据过拟合策略,通过复制样本,并在复制后的数据样本中加入高斯噪声,扩充训练样本集。针对现有的卷积神经网络结构参数多的问题,本发明采用高层特征融合方法,减少网络结构参数,以更有效地提取特征,提高检测精度。
二.根据上述原理,本发明具体技术方案包括如下:
(1)从肺部图像数据库联盟LIDC的原始数据集随机选取100个病例的图像,通过读取原始数据集的XML格式注释文件,提取出肺结节坐标信息,并用病例图像和肺结节坐标信息组成样本数据集;
(2)引入高斯噪声,扩充样本数据集:
对样本数据集进行数据扩充,即对数据样本进行缩放和裁剪,并对所有样本进行复制,在复制后的数据样本中加入均值为0,方差为0.02的高斯噪声,组成扩充后的样本数据集;
(3)构建新的共享特征的特征提取网络:
(3a)从牛津大学计算机视觉组VGGNet-16网络中选择其前12层卷积层作为特征提取的第一部分网络;
(3b)在第一部分网络之后增加第二部分网络,组成共享特征的新的特征提取网络,该第二部分网络由7层新卷积网络组成,且第二层新卷积层(22)的输出与第四层新卷积层(24)的输入连接,第三层新卷积层(23)的输出与第五层新卷积层(25)的输入连接,第五层新卷积层(25)的输出与第六层新卷积层(26)的输入连接,且将第一层新卷积层(21)的输出、第四层新卷积层(24)的输出、和第六层新卷积层(26)的输出相连接,组成第七层新拼接层(27)。
(3c)将第一部分网络第12层的输出分别与第二部分网络中的第一层新卷积层(21)的输入、第二层新卷积层(22)的输入、第三层新卷积层(24)的输入连接,组成共享特征的新的特征提取网络。
(4)根据步骤3获得的新的特征提取网络,结合Faster-RCNN模型现有的区域建议网络和分类网络,获得检测模型:
将新的特征提取网络的第二部分网络的第七层新拼接层(27)的输出分别与区域建议网络中的第一层卷积层的输入和分类网络中第一层感兴趣区域池化层的输入相连接;将区域建议网络中的第一层卷积层的输出与分类网络中第一层感兴趣区域池化层的输入连接,组成检测模型;
(5)训练检测模型:
检测模型中的区域建议网络和分类网络使用特征提取网络中每层相同的特征参数,通过交替优化的方法调整区域建议网络和分类网络中每一层的权重参数,得到训练好的新检测模型;
(6)肺结节检测:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710652335.5/2.html,转载请声明来源钻瓜专利网。