[发明专利]一种有效的遥感图像目标识别方法有效

专利信息
申请号: 201710659364.4 申请日: 2017-08-04
公开(公告)号: CN107463957B 公开(公告)日: 2020-04-03
发明(设计)人: 王鑫;邓梁;石爱业;徐立中;吕国芳 申请(专利权)人: 河海大学
主分类号: G06K9/62 分类号: G06K9/62;G06K9/46
代理公司: 南京苏高专利商标事务所(普通合伙) 32204 代理人: 李玉平
地址: 210098 *** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 有效 遥感 图像 目标 识别 方法
【说明书】:

发明公开一种有效的遥感图像目标识别方法,训练阶段中设计基于Harr特征和Adaboost的遥感图像目标快速分类器,该分类器首先提取遥感图像Harr特征,然后利用Adaboost对提取出来的Harr特征进行挑选、组合;设计基于颜色特征和Adaboost的遥感图像目标精确分类器,该分类器首先提取遥感图像的颜色特征,然后利用Adaboost对提取出来的颜色特征进行挑选、组合。识别阶段中,将训练阶段中获得的快速分类器与精确分类器用级联方式联合在一起,再应用于测试图像的识别过程,通过判定快速分类器的分类结果可确定是否进一步使用精确分类器。通过对实际遥感图像进行实验,结果表明该方法不仅确保了一定的识别精确性,且大大降低了时间复杂度。

技术领域

本发明涉及一种有效的遥感图像目标识别方法,属于数字图像处理技术领 域。

背景技术

随着遥感传感器技术的迅速发展,遥感图像信息呈现出几何级数的急剧增 长,人们想要了解遥感实时信息的话,遥感图像分类识别变得必不可少,进行良 好的分类识别能够使在大量信息中快速、高效地得出人们所感兴趣的信息。

但是,现阶段遥感图像目标识别技术针对遥感图像信息复杂、数据量大,会 产生目标识别中特征检测准确度低、特征匹配识别时间长等问题,为此,本发明 提出了一种有效的遥感图像目标识别方法,旨在提升目标识别精确度的同时,大 大降低识别计算量。

发明内容

发明目的:针对现有技术中存在的问题,本发明提供出了一种有效的遥感目 标识别方法。该方法不仅可以保证了一定的精确性,而且能够大大提高识别速度, 减少时间成本。

技术方案:一种有效的遥感图像目标识别方法,首先对遥感图像提取Harr 特征,然后利用Adaboost进行特征挑选、重组,以生成遥感目标快速识别分类 器;其次对遥感图像提取颜色特征,然后利用Adaboost进行特征挑选、重组, 以生成遥感目标精确识别分类器;最后将得到的快速识别分类器与精确识别分类 器进行级联,得到最终的联合分类器,对遥感图像目标进行快速、准确的识别。 具体包括如下步骤:

步骤一:对遥感图像提取Harr特征,然后利用Adaboost进行特征挑选、重 组,以特征的线性组合作为遥感目标快速识别分类器。

(1)输入若干某类遥感目标的训练样本图像RGBi(i=1,...,train_sum), 其中,train_sum为训练样本数量,同时输入一幅含有该类目标的遥感训练图像 A。

(2)针对每一幅遥感目标的训练样本图像RGBi,将其灰度化,得到其灰度 图像grayi,并利用下式将灰度图转换成积分图integrali

其中integrali(m,n)为积分图中坐标为(m,n)的值,grayi(k,l)是灰度 图中坐标为(k,l)的灰度值,上式说明积分图值的获取是灰度图的一个累积相 加的过程。综合所有训练样本图像的积分图,可得 {integral1,...,integrali,....,integraltrain_sum}。

(3)Harr特征的获取是通过利用Harr特征模板窗口去遍历每一个积分图, 在这个过程中,通过修改Harr特征模板在窗口中的作用范围,可以得到相应的 全局特征矩阵和局部特征矩阵,遍历整张积分图可以得到全局特征矩阵,遍历局 部积分图就可以得到局部特征矩阵;确定Harr特征模板的作用范围以后,通过 修改Harr特征模板在窗口的初始位置就可以得到不同的局部特征矩阵,遍历哪 个部分积分图就可以得到哪个部分的局部特征矩阵;确定Harr特征模板的作用 范围和初始位置以后,通过修改Harr特征模板的类别就可以得到完全不同类别 的全局特征矩阵和局部特征矩阵。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于河海大学,未经河海大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201710659364.4/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top