[发明专利]考虑运行工况和信息简化的风电机组传动链状态监测方法有效

专利信息
申请号: 201710727761.0 申请日: 2017-08-23
公开(公告)号: CN107588947B 公开(公告)日: 2020-04-28
发明(设计)人: 张柯;王科盛;倪清;杨滨源;王小康;王玉 申请(专利权)人: 电子科技大学
主分类号: G01M13/023 分类号: G01M13/023;G01M13/028
代理公司: 成都宏顺专利代理事务所(普通合伙) 51227 代理人: 周永宏
地址: 611731 四川省成*** 国省代码: 四川;51
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 考虑 运行 工况 信息 简化 机组 传动链 状态 监测 方法
【说明书】:

发明公开一种考虑运行工况和信息简化的风电机组传动链状态监测方法,应用于状态监测与故障诊断领域,首先通过对风电机组传动链的振动数据进行分析,得到时域与频域内的24个故障敏感指标;然后通过计算各组数据的24个故障敏感指标的均值和均方差,由3σ原理剔除异常数据;再对剩下的每组数据的24个指标采用PCA降维,得到2‑3个主成分指标,筛选出主成分指标中有功功率大于零的指标;从而计算剩下的各组数据有功功率大于零的指标的散点分布阈值圆;若是新输入的监测数据主成分指标分布与对应的阈值圆范围差别较大,则判断为风电机组传动链异常;以此实现风电机组传动链状态监测和故障诊断;并且本申请的方法简便,可视化程度高。

技术领域

本发明属于状态监测与故障诊断领域,特别涉及一种风电机组传动链状态监测技术。

背景技术

在人类面临能源危机和环境污染双重挑战的今天,风能作为一种可再生的清洁能源具有巨大的环保效益和商业潜力。随着各国对风能利用的重视和风力发电技术的提高,风电在电力市场中的占有比例不断上升,风电机组单机容量也稳步增加。但是风电机组高额的运行维护成本影响了风电机组的经济效益。

风电机组一般地处偏远、环境恶劣,并且机舱位于50-80m的高空,给机组维护维修工作造成困难,增加了机组的运行维护成本。一旦风电机组故障停机,将对电网安全和国民经济造成巨大影响。因此,无论是从降低风电机组的运行风险,还是减少运行成本的角度考虑,都需要大力提高风电设备的状态监测和故障诊断能力。特别是当前海量风电机组运行状态数据已经存在,如何充分利用现有监测数据就成为一个刻不容缓的研究课题。

在已投产的风电机组中,其传动链结构比较复杂,一直是风电机组故障的多发区。振动信号作为传动链故障特征信息的载体,能够有效地反映风电机组传动链绝大部分的故障信息。但是,目前风电监测的振动数据动辄十余处,而且每处的振动信号又可以进行各种时域、频域分析,运行工况又复杂多变,造成故障决策过程头绪繁多,很难给出有效的分析和明确的结论。

发明内容

为解决上述技术问题,本申请提出一种考虑运行工况和信息简化的风电机组传动链状态监测方法,

本申请采用的技术方案为:考虑运行工况和信息简化的风电机组传动链状态监测方法,包括:

S1、对采集到的时域数据进行时域与频域分析,分别确定各数据时域内及频域内的故障敏感指标;

S2、计算步骤S1确定的时域内故障敏感指标以及频域内故障敏感指标的均值和均方差;

S3、对步骤S1的故障敏感指标进行筛选,具体为:根据3σ原理剔除μ±3σ以外的异常数据;

其中,μ为均值;σ为均方差;

S4、根据实际工况对转速进行分组,对每一组数据的故障敏感指标采用PCA降维得到若干主成分指标;

S5、在步骤S4得到各组数据的主成分指标中选出有功功率大于零的指标;

S6、根据3σ原理确定每组数据由步骤S4得到的主成分指标的散点阈值分布圆;

S7、若新输入的监测数据的主成分指标分布与该组数据对应转速范围的阈值分布圆差别较大,则表示风电机组传动链异常;否则风电机组传动链正常。

进一步地,步骤S1所述各数据的时域内的故障敏感指标和频域内的故障敏感指标均包括:峰峰值指标、平均值指标、平均幅值指标、最大值指标、均方根值指标、标准差指标、偏斜度指标、峭度指标、峰值指标、波形指标、脉冲指标以及能量指标。

进一步地,步骤S4所述PCA降维具体为:求解得到该组数据的协方差矩阵,然后计算该组数据协方差矩阵的特征向量和特征值,特征值大小与贡献率大小成正比;按贡献率从高到底对特征向量排序,选取前N个特征向量;进而将N个特征向量与该组数据对应的故障敏感指标相乘,得到N个主成分指标。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于电子科技大学,未经电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201710727761.0/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top