[发明专利]实值平行因子分解的多径参数估算方法在审
申请号: | 201710741953.7 | 申请日: | 2017-08-25 |
公开(公告)号: | CN107645460A | 公开(公告)日: | 2018-01-30 |
发明(设计)人: | 文方青;张磊;李飞涛;盛冠群 | 申请(专利权)人: | 长江大学 |
主分类号: | H04L25/02 | 分类号: | H04L25/02 |
代理公司: | 武汉河山金堂专利事务所(普通合伙)42212 | 代理人: | 汪彩彩 |
地址: | 434023 *** | 国省代码: | 湖北;42 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 平行 因子 分解 参数 估算 方法 | ||
1.一种实值平行因子分解的多径参数估算方法,其特征在于,所述实值平行因子分解的多径参数估算方法包括如下步骤:
S1、构建接收数据的过采样矩阵,根据过采样矩阵构建出过采样矩阵阵列数据的PARAFAC模型;
S2、利用前后平滑技术和酉变换技术对过采样矩阵阵列数据的PARAFAC模型进行处理,构造过采样矩阵阵列的实数增广输出的PARAFAC模型;
S3、通过交替最小二乘算法获得实数增广输出的PARAFAC模型的导引矢量的估计;
S4、根据阵列的旋转不变特性,通过所述导引矢量的估计恢复源信号的角度与时延参数。
2.根据权利要求1所述实值平行因子分解的多径参数估算方法,其特征在于,所述步骤S2包括以下分步骤:
S21、利用前后平滑技术构建前后平滑后的PARAFAC模型张量;
S22、根据前后平滑后的PARAFAC模型张量构建扩展后的PARAFAC模型;
S23、利用酉变换技术对扩展后的PARAFAC模型进行实数变换接,构造过采样矩阵阵列的实数增广输出的PARAFAC模型。
3.根据权利要求2所述实值平行因子分解的多径参数估算方法,其特征在于,当利用M根均匀线性阵列的接收天线测量一个信道传输数字序列sl,且接收信号x(t)以采样率D倍符号率被过采样,接收信号完全占据N个符号的时长,所述步骤S1中过采样矩阵如下:
式中T为符号周期;…,exp{-j2π(M-1)dsinθk/λ}]T为接收导引矢量。
所述过采样矩阵阵列数据的PARAFAC模型如下:
式中,F即为时延矩阵;S为信源矩阵;表述维数为K×K×K的单位张量;A为方向矩阵。
4.根据权利要求3所述实值平行因子分解的多径参数估算方法,其特征在于,所述步骤S21中利用前后平滑技术构建前后平滑后的张量:
式中,ΠN表示反向交换矩阵,其下标表示矩阵的维数。
5.根据权利要求4所述实值平行因子分解的多径参数估算方法,其特征在于,所述步骤S22中扩展后的PARAFAC模型如下:
6.根据权利要求5所述实值平行因子分解的多径参数估算方法,其特征在于,所述步骤S23中通过酉变换将复数张量变换为实值张量如下:
式中,为酉变换后的导引矢量,其下标表示矩阵的维数。
7.根据权利要求6所述实值平行因子分解的多径参数估算方法,其特征在于,所述步骤S3中相关导引矢量的估计如下:
式中,Z1、Z2和Z3分别可被视为将张量数据沿着信源方向、时域方向和空域方向展开而获得的矩阵;及。
8.根据权利要求7所述实值平行因子分解的多径参数估算方法,其特征在于,所述步骤S4中所述源信号的角度与时延通过以下步骤恢复:
经过酉变换后的F1和A1仍然具有旋转不变特性,其旋转不变特性可表述如下:
其中,0表示元素全为0的矩阵,下标代表矩阵的维数;Re{·}、Im{·}分别为取实部和虚部;
经过交替最小二乘,获得F1和A1的估计值和如下:
式中,与分别为与的第k列;
则源信号的角度与时延可通过下式恢复:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于长江大学,未经长江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710741953.7/1.html,转载请声明来源钻瓜专利网。
- 上一篇:一种超速试验台主机中的转子安装结构
- 下一篇:无残留专用球阀检测装置