[发明专利]文档图表抽取方法、电子设备及计算机可读存储介质有效
申请号: | 201710776352.X | 申请日: | 2017-08-31 |
公开(公告)号: | CN107688788B | 公开(公告)日: | 2021-01-08 |
发明(设计)人: | 王鸿滨;王晓伟;汪伟;苏晓明;肖京 | 申请(专利权)人: | 平安科技(深圳)有限公司 |
主分类号: | G06K9/00 | 分类号: | G06K9/00 |
代理公司: | 深圳市沃德知识产权代理事务所(普通合伙) 44347 | 代理人: | 于志光;高杰 |
地址: | 518000 广东省深*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 文档 图表 抽取 方法 电子设备 计算机 可读 存储 介质 | ||
1.一种电子设备,其特征在于,所述电子设备包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的文档图表抽取系统,所述文档图表抽取系统被所述处理器执行时实现如下步骤:
获取指定文档中所有文字的位置信息,并根据所有文字的位置信息获取该指定文档中的文字分布信息;
分析该指定文档中的文字分布信息,判断出该指定文档中文字分布密度较低的区域、或/及无文字分布的区域,并将所述文字分布密度较低的区域、或/及无文字分布的区域标记为候选图表区域;及
将所述标记的候选图表区域转换为图片,并从转换后的图片中筛选出包含图表信息的图片,作为该指定文档中抽取出的图表;
所述判断出该指定文档中文字分布密度较低的区域包括:若一行文字的长度小于第一阀值,则判断出该行文字分布密度较低,并清洗该行文字;
所述判断出该指定文档中无文字分布的区域包括:对该指定文档中每一页从上到下进行扫描,若超过第二阀值宽度的区域没有扫描到文字,则判断出该区域为无文字分布的区域。
2.如权利要求1所述的电子设备,其特征在于,所述从转换后的图片中筛选出包含图表信息的图片包括:通过像素分布分析,对转换后的图片进行筛选,选择出包含图表信息的图片。
3.如权利要求2所述的电子设备,其特征在于,所述从转换后的图片中筛选出包含图表信息的图片包括:
对该转换后的图片进行灰度处理,将该转换后的图片转换为灰度图;
按行统计该灰度图中黑色像素点的数量和比例,若一行中黑色像素点的数量和比例超过指定阈值,则判定该行包含有具体内容;及
统计包含有具体内容的行的数量,若包含有具体内容的行数大于或等于设定阈值,则判定该转换后的图片为一张包含图表信息的图片。
4.一种文档图表抽取方法,应用于电子设备,其特征在于,所述方法包括:
获取指定文档中所有文字的位置信息,并根据所有文字的位置信息获取该指定文档中的文字分布信息;
分析该指定文档中的文字分布信息,判断出该指定文档中文字分布密度较低的区域、或/及无文字分布的区域,并将所述文字分布密度较低的区域、或/及无文字分布的区域标记为候选图表区域;及
将所述标记的候选图表区域转换为图片,并从转换后的图片中筛选出包含图表信息的图片,作为该指定文档中抽取出的图表;
所述判断出该指定文档中文字分布密度较低的区域包括:若一行文字的长度小于第一阀值,则判断出该行文字分布密度较低,并清洗该行文字;及
所述判断出该指定文档中无文字分布的区域包括:对该指定文档中每一页从上到下进行扫描,若超过第二阀值宽度的区域没有扫描到文字,则判断出该区域为无文字分布的区域。
5.如权利要求4所述的文档图表抽取方法,其特征在于,所述从转换后的图片中筛选出包含图表信息的图片包括:通过像素分布分析,对转换后的图片进行筛选,选择出包含图表信息的图片。
6.如权利要求5所述的文档图表抽取方法,其特征在于,所述从转换后的图片中筛选出包含图表信息的图片包括:
对该转换后的图片进行灰度处理,将该转换后的图片转换为灰度图;
按行统计该灰度图中黑色像素点的数量和比例,若一行中黑色像素点的数量和比例超过指定阈值,则判定该行包含有具体内容;及
统计包含有具体内容的行的数量,若包含有具体内容的行数大于或等于设定阈值,则判定该转换后的图片为一张包含图表信息的图片。
7.一种计算机可读存储介质,所述计算机可读存储介质存储有文档图表抽取系统,所述文档图表抽取系统可被至少一个处理器执行,以使所述至少一个处理器执行如权利要求4-6中任一项所述的文档图表抽取方法的步骤。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于平安科技(深圳)有限公司,未经平安科技(深圳)有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710776352.X/1.html,转载请声明来源钻瓜专利网。