[发明专利]基于鲁棒设计的高超声速飞行器神经网络复合学习控制方法有效

专利信息
申请号: 201710789243.1 申请日: 2017-09-05
公开(公告)号: CN107479383B 公开(公告)日: 2019-10-22
发明(设计)人: 许斌;程怡新;郭雨岩;张睿 申请(专利权)人: 西北工业大学;西北工业大学深圳研究院
主分类号: G05B13/04 分类号: G05B13/04
代理公司: 西北工业大学专利中心 61204 代理人: 王鲜凯
地址: 710072 *** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 设计 高超 声速 飞行器 神经网络 复合 学习 控制 方法
【说明书】:

发明公开了一种基于鲁棒设计的高超声速飞行器神经网络复合学习控制方法,用于解决现有高超声速飞行器控制方法实用性差的技术问题。技术方案是对姿态子系统严格反馈形式进行变换,得到输出反馈形式,用高增益观测器对于新定义变量进行估计,为后续控制器设计提供基础;控制器考虑系统的集总不确定性,仅需一个神经网络进行逼近,控制器设计简单,便于工程实现;考虑控制增益函数未知,引入其上下界信息,设计鲁棒项以保证系统稳定。由于将严格反馈形式转换为输出反馈形式,有效避免了采用神经网络对未来所需虚拟控制量的逼近;针对系统不确定性,设计鲁棒项,保证系统稳定性;构造建模误差设计神经网络复合学习更新律,提高神经网络学习速度。

技术领域

本发明涉及一种高超声速飞行器控制方法,特别涉及一种基于鲁棒设计的高超声速飞行器神经网络复合学习控制方法。

背景技术

高超声速飞行器作为一种具有快速打击能力的高精尖武器,引起了许多军事大国的高度重视。由于自身采用发动机/机体的一体化设计,加之复杂的动力学模型和飞行环境,高超声速飞行器具有强非线性和强不确定性等特性。这些特点使得高超声速飞行器控制器设计面临着巨大挑战。因此,不确定性的处理对高超声速飞行器安全飞行至关重要。

反步法作为一种典型控制方法被广泛应用于高超声速飞行器控制中。但传统反步法设计存在固有缺陷。采用反步法设计控制器,需要针对虚拟控制量进行反复微分,这会造成以下问题:(1)反复微分会造成控制设计“复杂度爆炸”问题;(2)控制器设计过程较为复杂,不利于工程实现。当前动态面和指令滤波方法被用来解决“复杂度爆炸”问题,但仍需反复设计虚拟控制量,过程繁琐。

《Neural network based dynamic surface control of hypersonic flightdynamics using small-gain theorem》(Bin Xu,Qi Zhang,Yongping Pan,《Neurocomputing》,2016年第173卷第3期)一文通过设计虚拟控制量(俯仰角、俯仰角速度)实现对航迹角和俯仰角的控制,最后利用舵偏角控制俯仰角速度;该动态面设计仍需逐步设计虚拟控制量并对每个通道的不确定性进行处理,设计过程繁琐,不利于工程实现。

发明内容

为了克服现有高超声速飞行器控制方法实用性差的不足,本发明提供一种基于鲁棒设计的高超声速飞行器神经网络复合学习控制方法。该方法对姿态子系统严格反馈形式进行变换,得到输出反馈形式,用高增益观测器对于新定义变量进行估计,为后续控制器设计提供基础;控制器考虑系统的集总不确定性,仅需一个神经网络进行逼近,控制器设计简单,便于工程实现;考虑控制增益函数未知,引入其上下界信息,设计鲁棒项以保证系统稳定。由于将严格反馈形式转换为输出反馈形式,有效避免了采用神经网络对未来所需虚拟控制量的逼近;针对系统不确定性,充分利用控制增益函数上下界信息,设计鲁棒项,保证系统稳定性;构造建模误差设计神经网络复合学习更新律,提高神经网络学习速度,实用性好。

本发明解决其技术问题所采用的技术方案:一种基于鲁棒设计的高超声速飞行器神经网络复合学习控制方法,其特点是包括以下步骤:

(a)建立高超声速飞行器纵向通道动力学模型为:

所述的纵向通道动力学模型由五个状态变量X=[V,h,α,γ,q]T和两个控制输入U=[δe,β]T组成;其中,V表示速度,γ表示航迹倾角,h表示高度,α表示攻角,q表示俯仰角速度,δe是舵偏角,β为节流阀开度;T、D、L和Myy分别代表推力、阻力、升力和俯仰转动力矩;m、Iyy、μ和r代表质量、俯仰轴的转动惯量、引力系数以及距地心的距离;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西北工业大学;西北工业大学深圳研究院,未经西北工业大学;西北工业大学深圳研究院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201710789243.1/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top