[发明专利]一种基于模型融合方法的大展弦比机翼优化设计方法在审
申请号: | 201710790069.2 | 申请日: | 2017-09-05 |
公开(公告)号: | CN107391891A | 公开(公告)日: | 2017-11-24 |
发明(设计)人: | 龙腾;汪艳;刘莉;李鑫 | 申请(专利权)人: | 北京理工大学 |
主分类号: | G06F17/50 | 分类号: | G06F17/50 |
代理公司: | 北京理工正阳知识产权代理事务所(普通合伙)11639 | 代理人: | 毛燕 |
地址: | 100081 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 模型 融合 方法 展弦比 机翼 优化 设计 | ||
本发明公开一种基于模型融合方法的大展弦比机翼优化设计方法,属于飞行器总体优化设计领域。本发明根据需求将优化分为结构学科的优化模型与系统级优化模型,使用罚函数法处理复杂约束;使用气动结构耦合建模技术建立高、低精度气动结构耦合分析模型;使用试验设计方法分别生成高、低精度样本点;分别调用高、低精度结构耦合分析模型获取高、低精度样本信息并存储;使用模型融合方法,将高精度与低精度模型信息融合建立代理模型;基于当前代理模型用优化方法进行优化求解,根据最优解处的真实响应值与基于模型融合方法的代理模型值的差值判定优化结果是否可信,不可信则返回重新构造融合模型进行优化求解,可信则输出最优设计结果,完成优化设计。
技术领域
本发明涉及一种基于模型融合方法的大展弦比机翼优化设计方法,属于飞行器总体优化设计技术领域。
背景技术
大展弦比机翼具有升阻比大、翼内容积大等特点,被广泛应用于高空无人机、太阳能飞机、大型洲际客机等飞行器中。这类飞行器在飞行过程中,大展弦比机翼受到气动载荷的影响,发生结构变形,变形幅度对气动性能的影响十分明显。因此,对大展弦比机翼进行分析设计时需要考虑气动结构耦合问题。针对气动结构耦合问题,可将流体力学和结构力学作为单学科独立求解,并通过软件调度技术实现跨学科数据交互,迭代求解实现耦合分析。为提高耦合分析精度,常采用高精度分析方法如计算流体力学方法(CFD)和有限元分析方法(FEA)分别对两个单学科进行分析求解。然而,高精度分析模型在提高分析精度和可信度的同时也带来了计算耗时的问题,虽然当今计算机软硬件技术已经有了长足的发展,但调用高精度分析模型完成一次迭代求解仍然极其耗时。例如使用CFD模型完成一次气动仿真分析需要数小时甚至数十小时。大展弦比机翼优化设计亦为反复迭代的过程,在优化过程中往往需要上千次调用高精度耦合分析模型,进一步增加设计成本,致使优化设计效率非常低下。
为了更好的说明本发明的技术方案,下面对应用到的气动结构耦合建模技术进行具体介绍。
气动结构耦合建模技术:
随着机翼展弦比的增加,机翼的柔性不断增加,其气动性能与结构性能之间的耦合现象也越明显。而气动结构耦合建模技术的关键则是气动与结构学科之间的信息传递。在现有成熟的气动结构耦合建模技术中,常使用三维插值方法来实现气动分析结果向结构学科传递,同时根据变形后机翼的前后缘上控制点的坐标来确定更新机翼的几何外形,重新进行气动学科分析,完成结构学科分析结果向气动学科的传递。另一方面,在气动结构耦合建模中,气动学科网格的疏密程度往往控制着整个耦合分析模型的计算成本与模型精度。加大网格密度,可以提高分析模型精度,但同时也会增加计算成本。相反,降低网格密度则会降低计算精度减少计算成本。
气动结构耦合分析模型的流程图如图1所示,具体方法步骤如下:
步骤1.使用基于UG二次开发的模型参数化技术,建立/更新机翼参数化模型。几何模型参数化的参数包括几何设计变量展弦比、根梢比、后掠角、翼型参数以及用于定量表示结构外形变形量的机翼前后缘位置控制点的坐标信息。参数化完成后输出几何外形文件用于后续分析使用,一般为step格式或者igs格式。
步骤2.使用CFD建立气动分析模型。输入几何外形文件、气动分析工况信息包括马赫数、攻角,输出气动分析结果包括升力、阻力信息以及气动力分布文件。可采用Gambit进行网格绘制,使用Fluent进行气动分析求解。
步骤3.使用FEA方法建立结构学科分析模型,使用Patran进行前处理,Nastran作为后处理。输入几何外形文件、使用PCL语言进行材料属性、单元属性定义以及气动力加载等相关分析优化设定。Nastran中自带的SQP优化器可实现结构学科优化。最终输出结构分析结构包括最大应力和最大位移以及机翼前后缘控制点的坐标信息。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京理工大学,未经北京理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710790069.2/2.html,转载请声明来源钻瓜专利网。