[发明专利]基于场景分类的模块化处方式图像显著性检测方法有效

专利信息
申请号: 201710827725.1 申请日: 2017-09-14
公开(公告)号: CN107622280B 公开(公告)日: 2020-06-12
发明(设计)人: 杨春蕾;普杰信;谢国森;刘中华;司彦娜;董永生;梁灵飞 申请(专利权)人: 河南科技大学
主分类号: G06K9/62 分类号: G06K9/62;G06K9/46
代理公司: 洛阳公信知识产权事务所(普通合伙) 41120 代理人: 宋晨炜
地址: 471000 河*** 国省代码: 河南;41
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 场景 分类 模块化 处方 图像 显著 检测 方法
【说明书】:

基于场景分类的模块化处方式图像显著性检测方法,根据图像的FP显著图和bpGMR显著图构成图像场景色调复杂度表示模型;罗列在显著性检测过程中可能会使用到的所有检测模块,按照不同的简单色调场景结构类别和复杂色调场景结构类别选取适用的检测模块构成整体的检测流程对待测图像检测,得到最终的显著图。解决图像场景的“简单色调复杂结构”造成的前景目标误检问题与“复杂色调”场景中的天空区域引起的前景目标误检问题,借鉴医生给病人根据不同病情、按照不同药品或检查手段的治疗目标而开具不同处方的方式,提出不同的场景特征应使用不同的显著性检测方案,使得检测更具针对性,从而提高图像显著性检测的效果和效率。

技术领域

发明涉及模式识别技术、数据分析建模技术、信息编码技术和数字图像处理技术。具体涉及模式分类技术、自然图像显著目标检测技术、图像特征提取及融合技术、数据分析及建立分类模型技术、图像超像素分割技术的基于场景分类的模块化处方式图像显著性检测方法。

背景技术

模式识别技术是指对表征事物或现象的各种形式的(数值的、文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学和人工智能的重要组成部分。显著性检测中的模式识别指的是对图像中背景和目标的识别与分类。显著目标是图像中从背景中突出的人或事物,一般包含更多人们感兴趣的、更有用的信息。显著目标检测的主要任务即检测并标定出显著目标所在的区域。由于检测结果可以被直接使用,因此,显著目标检测广泛应用于目标识别、图像分割、图像检索等领域。

常用的显著目标检测技术主要有基于局部对比的显著区域检测技术,如:基于局部对比和模糊生长技术、多尺度中心-周围直方图和颜色空间分布对比技术等;以及基于全局对比的显著区域检测技术。显著目标检测技术中的关键是通过像素、超像素、区域块等检测单位间的局部或全局特征差来确定各个检测单位的显著值,因此,特征提取是计算特征差的基本步骤。由于显著颜色是引起人类视觉注意的最根本特征,人们通常选取颜色计算特征差。目前许多显著目标检测模型虽然在单显著目标和简单背景场景下的性能已能够接近测试集的标准,但在存在多目标、大目标或极小尺寸目标的场景中,以及色调复杂场景下仍不能取得较好的表现。当图像场景复杂时,颜色特征可能不足以作为目标与背景的分类依据。这是因为场景的复杂性通常表现为以下特性:1、场景中含有多个结构复杂的目标[1],并可能部分相互重叠[2];2、目标区域呈不规则形状[3];3、目标分布于图像四周;4、目标与背景具有相似的色调,或者二者均具有杂乱的色调。我们认为“色调简单且结构简单”的场景和“色调复杂且结构复杂”的场景在需要进行显著性检测和目标识别的日常场景中并不多见,人们往往需要识别那些色调相对简单但结构较为复杂的场景中的目标。然而,据已掌握资料,目前还没有学者对图像的场景结构进行针对性分类,现有的显著性检测算法也基本上是通用型的,算法不会根据场景的类别及特点调整检测方法和流程,这是检测算法在复杂场景中效果不佳的原因之一。另一方面,由于图像场景复杂时机器视觉难以将前景从杂乱的背景中检测出来,造成多种先进算法生成的显著图中存在前景区域附近噪声较多、甚至前景边界模糊的现象,造成进一步识别前景或目标难度的增大。

数据分析及建立分类模型技术应用在图像显著性检测领域是一种通过分析特征提取后的数据,根据一定的分类目标训练出分类模型的技术。分类模型常基于高效的支持向量机[4]模型(Support Vector Machine,简称SVM),该模型是与相关的学习算法有关的监督学习模型,可以分析数据,识别模式,用于分类和回归分析。给定一组训练样本,每个标记为属于两类,一个SVM训练算法建立了一个模型,分配新的实例为一类或其他类,使其成为非概率二元线性分类。如在空间中的点,映射,使得所述不同的类别的例子是由一个明显的差距是尽可能宽划分的表示。新的实施例则映射到相同的空间中,并预测基于它们落在所述间隙侧上属于一个类别。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于河南科技大学,未经河南科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201710827725.1/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top