[发明专利]一种金属工件表面结构误检结果的排除方法有效

专利信息
申请号: 201710830063.3 申请日: 2017-09-15
公开(公告)号: CN107798674B 公开(公告)日: 2021-04-23
发明(设计)人: 黄茜;严科;胡志辉 申请(专利权)人: 华南理工大学;广东盈嘉科技工程发展股份有限公司
主分类号: G06T7/00 分类号: G06T7/00;G06T7/45
代理公司: 广州市华学知识产权代理有限公司 44245 代理人: 黄磊
地址: 510640 广*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 金属 工件 表面 结构 结果 排除 方法
【说明书】:

发明公开了一种金属工件表面结构误检结果的排除方法,包括步骤:采用传统缺陷识别方法检测得到初始缺陷图像集;计算当前缺陷图像的信息熵Hp;计算当前缺陷图像四个方0°、45°、90°和135°的灰度共生矩阵G;计算能量ASM、图像局部相关度COR、反差CON、边缘比率Re;计算图像的复杂度CP,通过实验获取经验阈值,在当前检测的图像复杂度大于阈值时,则认为当前图像为正常图像,从初始缺陷图像集中排除。本发明可以在R‑CNN检测缺陷后,排除掉误检的结构区域,提高缺陷检测的准确率,使在线缺陷检测可以高效和高质量地进行。

技术领域

本发明涉及目标识别研究领域,特别涉及一种金属工件表面结构误检结果的排除方法。

背景技术

金属工件弧形表面在生产阶段不可避免地会出现表面缺陷,这些缺陷会严重影响设备的外观,甚至影响设备的使用寿命,需要进行重新加工或报废处理。以往金属工件弧形表面在加工完成后基本上是经过人工检测,合格后才进入后续的加工或装配环节。目前的人工检测存在以下的缺点:(1)检测标准受人主观影响较大,不同的工人对同一缺陷的判断不一定相同;(2)检测的准确率不稳定,金属工件弧形表面上的缺陷尺寸小且不明显,人眼长期观察极易出现视觉疲劳,影响判断的准确度;(3)检测效率低,工人需要手动调整金属工件表面的位置来观察工件的每个角落,同时检测时间的长短还受熟练程度的影响。随着计算机性能的不断提升,计算机视觉技术凭借着高效率和智能化的优点,已经在众多领域取代了人工操作。

卷积神经网络(Convolutional Neural Network,CNN)相比于传统图像处理算法有检测时间短、无需人为设计特征以及要求用户输入的参数少等优点,而基于区域的CNN模型(Regions with CNN feature,R-CNN)更是在目标检测问题上取得了突破。但是卷积神经网络检测金属工件表面的效果与训练样本的数量和质量有着直接关系,实际应用中需要为每种型号的金属工件表面采集足够多的含缺陷的样本图像,这一过程所需时间周期过长,同时缺陷形态多样,导致样本收集困难。另外,该方法对于图1中的C类和D类区域有较好的识别效果,但是对于A类、B类区域,由于这类区域中存在金属工件表面固有的花纹、硬件等信息,采用该检测方法时往往被误判为是缺陷图像,造成误检。

为此,研究一种能够解决现有的缺陷识别方法尤其是R-CNN方法存在的误判多检问题,具有重要的实用价值。

发明内容

为了克服R-CNN检测金属弧形表面时存在误检的问题,本发明的目的在于提供一种金属工件表面结构误检结果的排除方法,在R-CNN检测缺陷后,利用该方法可以排除掉误检的结构区域,提高缺陷检测的准确率,使在线缺陷检测可以高效和高质量地进行。

本发明的目的通过以下的技术方案实现:一种金属工件表面结构误检结果的排除方法,包括步骤:

(1)采用R-CNN缺陷识别方法检测得到初始缺陷图像集;

(2)计算当前缺陷图像的信息熵Hp

(3)计算当前缺陷图像四个方向0°、45°、90°和135°的灰度共生矩阵G,定义当前灰度级为R;

根据灰度共生矩阵计算能量ASM、图像局部相关度COR、反差CON、边缘比率Re

(4)计算图像的复杂度Cp=Hp-ASM-COR+CON+Re

(5)通过实验获取经验阈值thc,当检测的图像复杂度大于thc时,则认为当前图像为工件结构的正常图像,将其从R-CNN检测出来的初始缺陷图像集中排除。

优选的,所述步骤(2)中,信息熵Hp的计算公式是:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华南理工大学;广东盈嘉科技工程发展股份有限公司,未经华南理工大学;广东盈嘉科技工程发展股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201710830063.3/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top