[发明专利]一种解决大数据聚类的基于视觉原理的聚类方法有效
申请号: | 201710861282.8 | 申请日: | 2017-09-21 |
公开(公告)号: | CN108108747B | 公开(公告)日: | 2020-07-28 |
发明(设计)人: | 徐宗本;张俪文;杨树森 | 申请(专利权)人: | 西安交通大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06F16/28;G06F16/35 |
代理公司: | 西安通大专利代理有限责任公司 61200 | 代理人: | 徐文权 |
地址: | 710049 陕*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 解决 数据 基于 视觉 原理 方法 | ||
本发明公开了一种解决大数据聚类的基于视觉原理的聚类方法,通过对原有数据进行给定精度的无损多尺度编码,实现数据的多尺度、多维度的网格化存储,基于各尺度编码判断编码和邻域编码的相似度,利用连通性分析,实现多尺度的聚类,提供多尺度的聚类结果。在数据编码过程中,利用了视觉原理,该原理符合韦伯定律,即感觉的差别阈限随原刺激量的变化而变化。
技术领域
本发明属于大数据聚类领域,具体涉及一种解决大数据聚类的基于视觉原理的聚类方法。
背景技术
聚类是依据数据的某种相似性(如结构或趋势)将数据划分为不同组别的知识发现方法。衡量数据间的相似度是聚类的基础,通常各个点之间的相似度以矩阵形式存储,对于大规模或是分布式数据此方式将导致数据传输量巨大,计算效率缓慢,甚至由于矩阵巨大无法存储的问题。
导致这些问题产生的原因是由于相似度以稠密矩阵的方式存储,数据量以原数据体量的平方速度增加。
目前已有的大数据聚类算法有以下两种:
以kmeans为代表的给定类个数的划分型聚类方法:该类方法在给定类数的前提下,衡量各个点与各类中心的相似度,判定点的归属,并迭代计算各个类中心。此种方法计算复杂度为线性,适合在大数据情形使用,但需要事先明确总体类数,同时各个类的数据分布需要满足球形分布,而且算法的稳定性与起始点的选取紧密相关。因此,虽然该类算法在大部分大数据平台上已经实现(Spark和petuum),但很难满足大数据聚类的需要。
另一类是DBSCAN基于密度的聚类方法:该方法通过衡量各个点在给定范围的点密度,确定点和给定范围内的点的连接关系,实现相同类内的元素相连接。此种方法适合在图模型中实现,可以实现任意形状的类的识别,但方法需要人为设定合适范围和密度的阈值,才能得到较好的聚类结果。这点在大数据和分布式情形下很难得到满足,因此该方法也很难满足聚类的需要。
聚类问题是人工智能、机器学习的等信息处理方法的基础,已有很多优秀的聚类算法,但在大数据计算环境下很难实现,而已有的大数据聚类方法却难以满足使用需要。
发明内容
本发明的目的在于克服聚类算法中相似度矩阵的生成和存储问题,提供一种解决大数据聚类的基于视觉原理的聚类方法,该方法通过对原有数据进行给定精度的无损多尺度编码,实现数据的多尺度、多维度的网格化存储,基于各尺度编码判断编码和邻域编码的相似度,利用连通性分析,实现多尺度的聚类,提供多尺度的聚类结果。在数据编码过程中,利用了视觉原理,该原理符合韦伯定律,即感觉的差别阈限随原刺激量的变化而变化。
为了达到上述目的,本发明包括以下步骤:
步骤一,确定编码精度:根据不同应用场景,设定不同的编码精度ε,ε的大小显示了编码与原始数据之间的误差;
步骤二,确定编码位数与最小尺度,最大尺度:由编码精度ε计算出编码的最大尺度σmax与最小尺度σ0,同时可以得到编码的长度L;
步骤三,原数据编码:将原数据集以编码精度ε进行编码,除返回聚类结果步外,之后的计算步骤将都在编码上进行;
步骤四,单尺度聚类分析:包括四个部分,编码集的截断操作、相邻编码查找、连通性分析和聚类结果解码;
第五步,增加尺度数,σ=σ+1,重复步骤四操作,直到最大尺度σmax。
所述步骤二中,d维的原始数据集χ中的任意元素χ∈Pδ,对于x的每一维x(t)∈[at,bt],t∈[1,d],最大尺度σmax满足
最小尺度σ0通常为1,编码的位数L=σmax×d。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安交通大学,未经西安交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710861282.8/2.html,转载请声明来源钻瓜专利网。
- 数据显示系统、数据中继设备、数据中继方法、数据系统、接收设备和数据读取方法
- 数据记录方法、数据记录装置、数据记录媒体、数据重播方法和数据重播装置
- 数据发送方法、数据发送系统、数据发送装置以及数据结构
- 数据显示系统、数据中继设备、数据中继方法及数据系统
- 数据嵌入装置、数据嵌入方法、数据提取装置及数据提取方法
- 数据管理装置、数据编辑装置、数据阅览装置、数据管理方法、数据编辑方法以及数据阅览方法
- 数据发送和数据接收设备、数据发送和数据接收方法
- 数据发送装置、数据接收装置、数据收发系统、数据发送方法、数据接收方法和数据收发方法
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置