[发明专利]目标对象的检测方法及装置在审

专利信息
申请号: 201710986009.8 申请日: 2017-10-20
公开(公告)号: CN107748867A 公开(公告)日: 2018-03-02
发明(设计)人: 陈志军 申请(专利权)人: 北京小米移动软件有限公司
主分类号: G06K9/00 分类号: G06K9/00;G06N3/04
代理公司: 北京格罗巴尔知识产权代理事务所(普通合伙)11406 代理人: 孙德崇
地址: 100085 北京市海淀区清河*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 目标 对象 检测 方法 装置
【权利要求书】:

1.一种目标对象的检测方法,其特征在于,包括:

识别步骤,将待处理图像输入级联的全卷积网络FCN模型的第n层,识别得到所检测的目标对象在所述第n层对应的概率图,所述级联的FCN模型包括L层FCN,L为大于或等于2的整数,所述n为从1到L的整数;

包围盒确定步骤,根据所述第n层对应的概率图上各概率值,得到各包围盒,并采用非极大值抑制NMS将各包围盒进行合并;

原图区域确定步骤,将合并后的包围盒在所述待处理图像上得到对应的原图区域;将所得到的所述原图区域输入所述级联的FCN模型的第n+1层,迭代地执行所述识别步骤、所述包围盒确定步骤和所述原图区域确定步骤;直至在所述级联的FCN模型的第L层,输出所述目标对象在所述待处理图像的位置。

2.根据权利要求1所述的方法,其特征在于,还包括:

针对所述目标对象进行训练,得到级联的卷积神经网络CNN模型,所述级联的CNN模型包括多层CNN;

将所述级联的CNN模型转化为所述级联的FCN模型,所述级联的FCN模型包括多层FCN。

3.根据权利要求1或2所述的方法,其特征在于,还包括:

将所述待处理图像按照不同比例缩放,得到多个缩放后的图像;

将所述多个缩放后的图像输入所述级联的FCN模型,迭代地执行识别步骤、包围盒确定步骤和原图区域确定步骤,得到所述目标对象在所述多个缩放后的图像中对应的位置;

采用NMS对识别出的所述多个缩放后的图像中的位置进行聚合,得到所述目标对象在所述待处理图像的位置。

4.根据权利要求3所述的方法,其特征在于,将所述多个缩放后的图像输入所述级联的FCN模型,迭代地执行识别步骤、包围盒确定步骤和原图区域确定步骤,得到所述目标对象在所述多个缩放后的图像中对应的位置,包括:

所述识别步骤包括:将尺度为M*N的图像输入所述级联的FCN模型的第n层,识别得到所述第n层对应的X*Y的概率图,所述尺度为M*N的图像由所述待处理图像缩放得到的图像,所述X等于M*St,Y等于N*St,所述St为步长,所述n为从1到L的整数;

所述包围盒确定步骤包括:根据第n层对应的概率图上的概率值大于设定阈值的点,得到S个包围盒B,并采用NMS将S个包围盒B进行合并;

所述原图区域确定步骤包括:将合并后的S个包围盒在所述尺度为M*M的图像上得到对应的S个原图区域B1;将所得到的S个原图区域B1输入所述级联的FCN模型的第n+1层,迭代地执行所述识别步骤、所述包围盒确定步骤和所述原图区域确定步骤,直至在所述级联的FCN模型的第L层,输出所述目标对象在所述尺度为M*M的图像中对应的概率图和位置。

5.一种目标对象的检测装置,其特征在于,包括:

识别模块,用于将待处理图像输入级联的全卷积网络FCN模型的第n层,识别得到所检测的目标对象在所述第n层对应的概率图,所述级联的FCN模型包括L层FCN,L为大于或等于2的整数,所述n为从1到L的整数;

包围盒确定模块,用于根据所述第n层对应的概率图上各概率值,得到各包围盒,并采用非极大值抑制NMS将各包围盒进行合并;

原图区域确定模块,用于将合并后的包围盒在所述待处理图像上得到对应的原图区域;

迭代模块,用于将所得到的所述原图区域输入所述级联的FCN模型的第n+1层,控制所述识别模块、所述包围盒确定模块和所述原图区域确定模块迭代地执行动作,直至在所述级联的FCN模型的第L层,输出所述目标对象在所述待处理图像的位置。

6.根据权利要求5所述的装置,其特征在于,还包括:

训练模块,用于针对所述目标对象进行训练,得到级联的卷积神经网络CNN模型,所述级联的CNN模型包括多层CNN;

转化模块,用于将所述级联的CNN模型转化为所述级联的FCN模型,所述级联的FCN模型包括多层FCN。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京小米移动软件有限公司,未经北京小米移动软件有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201710986009.8/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top