[发明专利]一种时频同步应用中端到端流量异常特征提取方法在审

专利信息
申请号: 201711295334.6 申请日: 2017-12-08
公开(公告)号: CN108055149A 公开(公告)日: 2018-05-18
发明(设计)人: 姜运斗;孟凡博;吴菲;马伟哲;关松;赵宏昊;代东旭;宋曼瑞;金洪翰;蒋定德 申请(专利权)人: 国网辽宁省电力有限公司本溪供电公司;国网辽宁省电力有限公司;国家电网公司
主分类号: H04L12/24 分类号: H04L12/24;H04L12/26
代理公司: 沈阳东大知识产权代理有限公司 21109 代理人: 梁焱
地址: 114000 辽*** 国省代码: 辽宁;21
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 同步 应用 中端 流量 异常 特征 提取 方法
【说明书】:

发明提供一种时频同步应用中端到端流量异常特征提取方法,涉及时频同步网络环境下网络异常管理技术领域。首先,为了捕捉终端到终端的网络流量的动态特性,利用反向传播神经网络建立终端到终端的网络流量模型。其次,在建立的流量模型的基础上,利用滑动时间窗实现下一时刻的端到端网络流量估计。第三,主成分分析是用来提取所估计的终端到终端的网络流量的主要特征。然后根据提取的主特征成分,利用决策阈值识别异常网络,能有效地检测时频同步应用中端到端流量异常特征。

技术领域

本发明涉及时频同步网络环境下网络异常管理技术领域,尤其涉及一种时频同步应用中端到端流量异常特征提取方法。

背景技术

随着新的网络应用和服务的迅速出现,网络流量在移动通信网络中呈指数级上升和增长,特别是移动网络。在这种情况下,出现了新的网络流量模式和功能。这导致在检测可疑和异常终端到终端的网络流量时产生了更大的压力。更重要的是,对于新的网络技术,如软件定义的网络、信息为中心的网络和物联网,网络异常检测都面临着全新的挑战和困难。因此,建立具有较高的检测精度和能力的新的检测方法是非常重要的。端到端网络流量异常检测在网络故障定位、网络管理、网络可靠性等方面起着非常重要的作用。因此,在当前运营和研究公司已成为一个重要的研究课题。

bhuyan等人提出了一种识别网络异常流量的多步检测方法。蒋等人提出了在多媒体医疗通信中识别异常流量成分的一种新的流量异常检测方法,它是采用小波包分解和经验模态分解方法来提取异常特征的网络流量。他们还采用其他时频分析技术分析通信网络的端到端的流量异常行为。这些检测方法可以得到更好的网络隐藏异常流量检测结果。此外,Kevric等人利用树算法构建组合分类器实现网络入侵检测。他们的分类器能够有效提取网络流量中的异常成分。也可以利用连续小波变换和参数方法获得相当准确的检测结果。Eeikson等人提出了一种基于模型的检测方法来描述网络流量异常活动。与此同时,蒋等人利用谱峭度分析理论来检测和识别网络流量异常。他们通过使用不同网络流量信号的谱峭度得到检测结果,然后对于端到端的流量行为做出正确决策。于等人利用ARIMA模型建立无线传感器网络中的端到端的网络流量模型。然后,他们提出了一种检测方法来发现异常和可疑的无线传感器网络流量。以上这些方法虽然能够检测网络级的流量异常,但他们仍然持有较大的检测错误,特别是对时变的网络的异常侦测难以获得精确的侦测结果,并且存在较大的检测误报率。因此,需要新的检测方法,以获得更准确的检测结果。

发明内容

本发明要解决的技术问题是针对上述现有技术的不足,提供一种时频同步应用中端到端流量异常特征提取方法,能够有效的在终端到终端的网络流量中找出和识别异常和可疑的成分。

为解决上述技术问题,本发明所采取的技术方案是:

一种时频同步应用中端到端流量异常特征提取方法,包括以下步骤:

步骤1:给出从网络获得的训练流量x={x(t)|t=1,2,...,z},通过主成分分析方法确定网络流量中最主要的k个主成分数目;

步骤2:初始化BP神经网络模型,采用线性激活函数建立一个多输入单输出反向传播神经网络模型;设置误差界限为δ,总迭代次数为T,并令k=0,其中k表示网络流量主成分数目;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于国网辽宁省电力有限公司本溪供电公司;国网辽宁省电力有限公司;国家电网公司,未经国网辽宁省电力有限公司本溪供电公司;国网辽宁省电力有限公司;国家电网公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201711295334.6/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top