[发明专利]医疗救援请求移动呼叫方法在审
申请号: | 201711358214.6 | 申请日: | 2017-10-19 |
公开(公告)号: | CN107832479A | 公开(公告)日: | 2018-03-23 |
发明(设计)人: | 季长清;秦静;汪祖民;金锡哲;刘畅;吴锐 | 申请(专利权)人: | 大连大学 |
主分类号: | G06F17/30 | 分类号: | G06F17/30 |
代理公司: | 大连智高专利事务所(特殊普通合伙)21235 | 代理人: | 毕进 |
地址: | 116622 辽宁省*** | 国省代码: | 辽宁;21 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 医疗 救援 请求 移动 呼叫 方法 | ||
本申请为申请号2017109759976、申请日2017-10-19、发明名称“构建倒排泰森多边形的分布式索引方法”的分案申请。
技术领域
本发明属于云计算、大数据领域,涉及一种在分布式环境下可以有效提高查询效率的MapReduce索引。
背景技术
MapReduce是一种目前流行的基于云平台的编程框架,它可以处理及生成大型数据集,其利用无共享集群来支持数据密集型的应用。处理步骤具体为:在分布式缓存系统中,由MapReduce任务在处理一个键/值对时,是在map函数中生成一组中间键/值对,根据相同的中间键来合并所有的中间值,每个map都独立于其他操作,即所有maps就可以并行执行。MapReduce的一组“reducers”可以执行归约操作,具有相同key的Map操作的输出同时可以归约到同一个reducer。然而单独运行一个归约过程可能会使得效率低下;
MapReduce可用于支持比传统的商业服务器集群更大规模的数据处理,它可以在仅仅几小时内即可处理一个PB数量的数据,使用MapReduce进行数据索引具有较好的应用前景。然而,现有的索引算法由于不能适应MapReduce的并行处理,构建索引的时间耗费不够理想,可扩展性不佳,因而有必要构建一种索引方法,其能够适用于并行处理,以能够提高检索效率。
发明内容
为了提高现有数据查询方法索引效率,构建一种基于分布式的时空索引方法,本发明提供如下方案:
一种构建倒排泰森多边形的分布式索引方法,其步骤如下:
S1.d维空间中给定两个数据集R和S,Hadoop进行分片,部分mappers同时并行运行,在MapReduce任务中,使用默认的reducer,在启动map函数之前,使用预聚类算法得到代表点p,并加载到每个map的主存中;
S2.在每一个map处理进程中,依次利用TextInputForma来读取输入的分片,TextInputFormat从文件读取数据到Mapper的实例中,分别计算数据集R中的m个对象r与各代表点p之间的距离、数据集S中的n个对象s与代表点p之间的距离,并将距离数据集R中的第i个对象r与数据集S中的第j个对象sj的最接近的代表点Pij选出并聚集在Voronoi单元格VCi中,形成m个VC的分区VC1~VCm,所述的i顺序取遍1~m,并且,当i顺序取1~m中的一个具体值时,在i的该值下,j顺序取遍1~n的所有值,得到m个存储最接近的代表点的Voronoi单元格;输出<VCi,List(Pij)>对;
已知查询点p,判别其最邻近的VCi或最一些邻近的VCi集,由mapper输出所述最邻近的VCi或最一些邻近的VCi集对应的原始数据集R和/或S中的r、s对象,并输出最邻近的VCi或最一些邻近的VCi集的id;
S3.将mapper输出到Hadoop的文件系统。
在所述步骤S2中,所述的将距离数据集R中的第i个对象r与数据集S中的第j个对象sj的最接近的代表点Pij选出并聚集在Voronoi单元格VCi中,形成m个VC的分区VC1~VCm的过程如下:
数据集R中第一个对象r1与数据集S中的第一个对象s1的最接近的代表点为P11,数据集R中第一个对象r1与数据集S中的第二个对象s2的最接近的代表点为P12,······,数据集R中第一个对象r1与数据集S中的第n个对象sn的最接近的代表点为P1n,该n个最接近的代表点选出并聚集在Voronoi单元格V1中;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于大连大学,未经大连大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201711358214.6/2.html,转载请声明来源钻瓜专利网。