[发明专利]增强BTM主题模型主题词语义相关性和主题凝聚度方法有效

专利信息
申请号: 201711487139.3 申请日: 2017-12-29
公开(公告)号: CN108182176B 公开(公告)日: 2021-08-10
发明(设计)人: 谢珺;李思宇;谷兴龙;杨云云;续欣莹 申请(专利权)人: 太原理工大学
主分类号: G06F40/30 分类号: G06F40/30;G06F40/289
代理公司: 太原市科瑞达专利代理有限公司 14101 代理人: 卢茂春
地址: 030024 山西*** 国省代码: 山西;14
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 增强 btm 主题 模型 主题词 语义 相关性 凝聚 方法
【说明书】:

增强BTM主题模型主题词语义相关性和主题凝聚度方法,属于文本挖掘和机器学习的交叉领域,包括下述内容:(1)文本语料获取以及预处理;(2)词向量模型构建;(3)BTM主题模型的建模;(4)词语之间语义相关性计算;(5)结合双词语义相关的主题模型的建模。本发明的双词扩展的主题模型在主题凝聚度TC值以及Js距离值上都比传统的主题模型有明显的提高。

技术领域

本发明属于文本挖掘和机器学习的交叉领域,具体涉及文本主题模型与词向量计算模型,尤其涉及到文本主题模型的主题词语义增强以及在短文本商品评论中的应用。

背景技术

现代社会购物是人们一种不可替代的生活方式,而通过电商进行购物更是其中一条极其重要的途径,大到家用电器,小到锅碗瓢盆,各种商品应有尽有。但是对于如何选择要购买的商品,消费者一般的步骤为,首先选择自己要购买的商品的种类,然后看具体某个商品的商品详情,最后查看商品评论,参考已买过的人的建议,选择自己是否要购买此商品。以上三个步骤就是购买商品的大体过程,但是对于某些商品来说,商品评论特别多,一一查看明显费时费力,并且得出的结果也不尽相同,并且针对商品的某个具体属性,无法做到有针对性的查找。

针对文本挖掘的算法主题模型来说,专家有很多的解决办法,但是对于将其应用到商品短文本评论这一关键问题上,这些方法仍存在一些问题,主要有:

1)虽然现在有很多学者利用BTM主题模型来处理短文本评论,但是该模型提取出的主题词主要是基于词共现的方式,缺乏深层的语义相关性。

2)在主题表征方面,传统BTM主题模型无法明显的看出究竟是什么主题,也就是主题内部的语义表达不是特别突出,造成最后的主题凝聚度偏低。

由此可见,现有的文本主题模型,在主题词语义相关性和主题凝聚度等方面存在问题,尚无法解决短文本主题挖掘这一问题。

发明内容

本发明提供主题词语义相关性以及主题凝聚度高的一种应用于短文本商品评论的主题模型的改进方法。

本发明的技术方案,一种用于增强BTM主题模型主题词语义相关性和主题凝聚度的方法:

(1)文本语料获取以及预处理:即从电商在线评论中,通过爬虫程序将手机商品里面的评论抓取下来,然后通过分词程序以及停用词词表,对语料进行预处理。

(2)词向量模型构建:利用大规模的语料,训练语义相关的词向量,确定词向量的维度,选择合适维度的词向量。

(3)BTM主题模型的建模,即用吉布斯采样算法,提取语料中的文档-主题矩阵A以及主题-主题词矩阵B。

(4)词语之间语义相关性计算,即用已经建立好的词向量模型,通过余弦距离,计算出每条短文本商品评论中,通过分词之后的,任意两个词语之间的语义相关性,并选取合适的语义距离值C,C的取值范围为0~1.

(5)结合双词语义相关的主题模型的建模,即将语义距离值C作为筛选条件,选择不同数量的相关词语融入到主题模型吉布斯采样的过程中,实现双词BTM主题模型的构建。

所述的BTM主题模型的建模是由晏小辉等人于2013年提出,方式如下:

步骤1:对每一个主题Z,描述确定主题Z下的词分布φ~Dir(β),φ为每个主题下的词分布,β狄利克雷分布,φ的超参数;

步骤2:对短文本语料库L,描述一个语料库级别的主题分布θ~Dir(α),θ为语料库级的主题多项分布;α为狄利克雷分布,是θ的超参数;

步骤3:对于词对|B|里的每一个词对按照以下步骤产生,假设一个词对用b来表示,则b=(bi,bj):

i.从语料库级别的主题分布θ中抽取一个主题Z,即Z~Muli(θ)

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于太原理工大学,未经太原理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201711487139.3/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top