[发明专利]组合磁场的电弧离子镀与孪生靶高功率脉冲磁控溅射方法在审
申请号: | 201711492064.8 | 申请日: | 2017-12-30 |
公开(公告)号: | CN109989027A | 公开(公告)日: | 2019-07-09 |
发明(设计)人: | 魏永强;王好平;宗晓亚;侯军兴;刘源;蒋志强 | 申请(专利权)人: | 魏永强 |
主分类号: | C23C14/32 | 分类号: | C23C14/32;C23C14/35;C23C14/54 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 450015 河南省郑州市二七*** | 国省代码: | 河南;41 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 高功率脉冲 电源 电弧离子镀 磁控溅射 孪生靶 磁场装置 活动线圈 偏压电源 组合磁场 大颗粒 真空室 材料表面处理技术 等离子体 电弧离子镀靶源 磁控溅射靶源 电弧等离子体 复合等离子体 制备工艺参数 薄膜沉积 工作气体 连接装置 匹配装置 启动系统 使用限制 磁过滤 示波器 放电 靶材 镀膜 薄膜 室内 传输 污染 | ||
组合磁场的电弧离子镀与孪生靶高功率脉冲磁控溅射方法,属于材料表面处理技术领域,本发明为解决电弧离子镀中大颗粒对薄膜的污染和靶材使用限制、磁过滤电弧等离子体的损失及高功率脉冲磁控溅射放电不稳定等问题。本发明的装置包括:偏压电源、电弧离子镀靶源及电源、多级磁场装置及电源、活动线圈装置及电源、波形匹配装置、孪生靶高功率脉冲磁控溅射靶源及电源、示波器和真空室;薄膜沉积:连接装置,启动系统,待真空室内的真空度小于10‑4Pa时,通入工作气体,开启镀膜电源,偏压电源对等离子体的能量进行调节,多级磁场装置和活动线圈装置消除大颗粒缺陷和引导复合等离子体的传输,减少在真空室中的损耗,设置制备工艺参数。
技术领域
本发明涉及组合磁场的电弧离子镀与孪生靶高功率脉冲磁控溅射方法,属于材料表面处理技术领域。
背景技术
在电弧离子镀制备薄膜的过程中,由于弧斑电流密度高达2.5~5×1010A/m2,引起靶材表面的弧斑位置处出现熔融的液态金属,在局部等离子体压力的作用下以液滴的形式喷溅出来,附着在薄膜表面或镶嵌在薄膜中形成“大颗粒”(Macroparticles)缺陷(BoxmanR L, Goldsmith S. Macroparticle contamination in cathodic arc coatings:generation, transport and control [J]. Surf Coat Tech, 1992, 52(1): 39-50.)。在电弧等离子体中,由于电子的运动速度远远大于离子的运动速度,单位时间内到达大颗粒表面的电子数大于离子数,使大颗粒呈现负电性。相对于厚度级别为微米或亚微米的薄膜,尺寸在0.1-10微米的大颗粒缺陷就像PM2.5对空气质量的污染一样,对薄膜的质量和性能有着严重的危害。随着薄膜材料和薄膜技术应用的日益广泛,大颗粒缺陷问题的解决与否成为电弧离子镀方法进一步发展的瓶颈,严重制约了其在新一代薄膜材料制备中的应用。
磁控溅射技术起初采用直流供电模式,相比于电弧离子镀方法,没有大颗粒缺陷,可以实现各种材料的低温溅射沉积,但其溅射材料的离化率很低,溅射靶的功率密度在50W/cm2,薄膜沉积时得不到足够的离子数目,导致沉积效率很低,易产生“靶中毒”的现象,同时离子所带的能量较低,使薄膜组织不够致密(常天海. 反应磁控溅射工艺中的滞后效应研究 [J]. 真空与低温, 2003, 9(4): 7-10.)。1999年,瑞典林雪平大学的V.Kouznetsov等人(Kouznetsov V, Macák K, Schneider J M, Helmersson U, Petrov I.A novel pulsed magnetron sputter technique utilizing very high target powerdensities [J]. Surf Coat Tech, 1999, 122(2-3): 290-293.)提出高功率脉冲磁控溅射技术(HPPMS),其利用较高的脉冲峰值功率和较低的脉冲宽度来提高溅射材料的离化率,同时靶材阴极不会因过热而增加靶冷却的要求。其峰值功率相比于普通直流磁控溅射提高了100倍,约为1000~3000W/cm2,等离子体的密度达到1018m-3数量级,靶材中心区域离子密度可达1019m-3数量级,同时溅射材料的离化率最高可达90%以上,且不含目前离化率最高的电弧离子镀方法中的大颗粒缺陷。2008年之后,在国内各个高校也开始展开针对高功率脉冲磁控溅射技术的研究(李希平. 高功率复合脉冲磁控溅射等离子体特性及TiN薄膜制备[D]; 哈尔滨工业大学, 2008. 吴忠振, 朱宗涛, 巩春志, 田修波, 杨士勤, 李希平. 高功率脉冲磁控溅射技术的发展与研究 [J]. 真空, 2009, 46(3): 18-22.和牟宗信, 牟晓东, 王春, 贾莉, 董闯. 直流电源耦合高功率脉冲非平衡磁控溅射电离特性 [J]. 物理学报, 2011, 60(1): 422-428.),但是由于高功率脉冲磁控溅射技术的脉冲放电不稳定,且靶电位较低,靶材金属在离化之后大量的金属离子被吸回到靶表面,未能到达基体表面实现薄膜的沉积,导致薄膜沉积的效率大大降低,影响其进一步取代普通磁控溅射和电弧离子镀的步伐,在后续的推广应用方面受到了一定限制。虽然也有学者对高功率脉冲磁控溅射的应用进行了改进,比如中国专利高功率复合脉冲磁控溅射离子注入与沉积方法(公开号:CN101838795A,公开日期:2010年9月22日)所提出的利用高压和脉冲同步匹配装置充分利用高功率脉冲磁控溅射的优点,实现高功率脉冲磁控溅射技术在离子注入领域的突破,但是由于高压电源的限制,到达基体表面沉积离子的密度不能太高,否则会导致高压电源的损坏,葡萄牙科英布拉大学的Ferreira等人(Ferreira F, Serra R, Oliveira J C,Cavaleiro A. Effect of peak target power on the properties of Cr thin filmssputtered by HiPIMS in deep oscillations magnetron sputtering (DOMS) mode[J]. Surf Coat Tech, 2014, 258: 249-256.)提出了深振荡模式的高功率脉冲磁控溅射脉冲电压波形来制备Cr薄膜,发现提高峰值功率可以使薄膜从柱状晶向更致密的形貌转变,消除了薄膜的孔隙缺陷,薄膜的硬度增加到17GPa。而孪生靶中频磁控溅射技术通过交流电源在双靶上分别获得相位相反的交流电压,交替成阳极和阴极,可以大幅提升磁控溅射放电运行的稳定性,同时可以避免靶表面因“靶中毒”产生的电荷积累,引起靶表面打火或阳极消失的问题,靶材溅射率高,是目前化合物薄膜磁控溅射制备的首选沉积方法之一(李芬, 朱颖, 李刘合, 卢求元, 朱剑豪. 磁控溅射技术及其发展 [J]. 真空电子技术,2011, (3): 49-54.)。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于魏永强,未经魏永强许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201711492064.8/2.html,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类