[发明专利]用于神经网络的运算装置、电路及相关方法在审

专利信息
申请号: 201780013527.X 申请日: 2017-10-31
公开(公告)号: CN108780524A 公开(公告)日: 2018-11-09
发明(设计)人: 谷骞;高明明;李涛 申请(专利权)人: 深圳市大疆创新科技有限公司
主分类号: G06N3/063 分类号: G06N3/063
代理公司: 北京龙双利达知识产权代理有限公司 11329 代理人: 王龙华;毛威
地址: 518057 广东省深圳市南山区高*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 运算装置 处理单元 神经网络 运算操作 中间结果 电路 缓存空间 输入特征 硬件资源 数据处理 正整数 减小 时延 输出
【说明书】:

提供一种用于神经网络的运算装置、电路及相关方法,该运算装置包括:第一处理单元,用于根据计算窗口的大小对k1个输入特征数据进行第一运算操作,获得中间结果,该计算窗口的大小为k1×k2,k1与k2均为正整数;第二处理单元,用于根据该计算窗口的大小对该第一处理单元输出的k2个中间结果进行第二运算操作,获得计算结果。该运算装置可以有效节省缓存空间,从而节省硬件资源,同时可以减小数据处理的时延。

技术领域

本申请涉及神经网络领域,并且更为具体地,涉及一种用于神经网络的运算装置、电路及相关方法。

背景技术

卷积神经网络由多个层叠加在一起形成,上一层的结果为输出特征图(outputfeature maps,OFMs),作为下一层的输入特征图。通常中间层的输出特征图的通道非常多,图像也比较大。卷积神经网络的硬件加速器在处理特征图数据时,由于片上系统缓存大小和带宽的限制,通常将一张输出特征图分割成多个特征图片段(feature map segment),依次输出每个特征图片段,并且每个特征图片段按列并行输出。例如,一个完整的输出特征图被分割成3个特征图片段,每个特征图片段按列依次输出。

目前,在图像处理过程中,通常使用线缓冲器(line buffer)来实现卷积层运算或池化层运算的数据输入。线缓冲器的结构要求输入数据按照行(或列)优先以光栅化的顺序输入。以池化窗口的高度为k,输入特征矩阵的宽度为W为例,则线缓冲器需要缓存的深度k*W,即线缓冲器必须缓存大小为k*W的输入数据后,才可以进行数据运算,这样会增大数据处理的时延。

上述可知,现有的图像处理方案需要的缓存空间较大,同时数据处理的时延也较大。

发明内容

本申请提供一种用于神经网络的运算装置、电路及相关方法,可以有效节省缓存空间,同时可以减小数据处理的时延。

第一方面,提供一种用于神经网络的运算装置,所述运算装置包括:第一处理单元,用于根据计算窗口的大小对k1个输入特征数据进行第一运算操作,获得中间结果,所述计算窗口的大小为k1×k2,k1与k2均为正整数;第二处理单元,用于根据所述计算窗口的大小对所述第一处理单元输出的k2个中间结果进行第二运算操作,获得计算结果。

在本申请提供的技术方案中,通过将神经网络的窗口操作分解为列操作与行操作,使得只要接收到一行或一列输入数据,就可以开始计算,换句话说,可以按行或按列缓存输入特征矩阵,并且可以同时进行运算,无需像现有技术中必须先缓存够一定数量的二维输入数据之后,才可以进行计算,因此,可以有效减小数据处理的时延,有效提高神经网络的数据处理效率,同时也可以节省存储资源,从而节省硬件资源。

结合第一方面,在第一方面的一种可能的实现方式中,所述运算装置包括M个所述第一处理单元与M个所述第二处理单元,且所述M个第一处理单元与所述M个第二处理单元一一对应,M为大于1的正整数;所述运算装置还包括:预处理单元,用于按列接收输入特征矩阵,并根据所述计算窗口对接收的列输入特征值进行处理,得到M组数据,其中,每组数据包括k1个输入特征值,所述预处理单元还用于将所述M组数据一对一地输入到所述M个第一处理单元中。

在本申请提供的技术方案中,可以实现图像数据的并行处理,从而有效提高数据处理的效率。

第二方面,提供一种用于处理神经网络的电路,所述电路包括:第一处理电路,用于根据计算窗口的大小对k1个输入特征数据进行第一运算操作,获得中间结果,所述计算窗口的大小为k1×k2,k1与k2均为正整数;第二处理电路,用于根据所述计算窗口的大小对所述第一处理电路输出的k2个中间结果进行第二运算操作,获得计算结果。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于深圳市大疆创新科技有限公司,未经深圳市大疆创新科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201780013527.X/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top