[发明专利]用于神经网络的运算装置、电路及相关方法在审
申请号: | 201780013527.X | 申请日: | 2017-10-31 |
公开(公告)号: | CN108780524A | 公开(公告)日: | 2018-11-09 |
发明(设计)人: | 谷骞;高明明;李涛 | 申请(专利权)人: | 深圳市大疆创新科技有限公司 |
主分类号: | G06N3/063 | 分类号: | G06N3/063 |
代理公司: | 北京龙双利达知识产权代理有限公司 11329 | 代理人: | 王龙华;毛威 |
地址: | 518057 广东省深圳市南山区高*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 运算装置 处理单元 神经网络 运算操作 中间结果 电路 缓存空间 输入特征 硬件资源 数据处理 正整数 减小 时延 输出 | ||
提供一种用于神经网络的运算装置、电路及相关方法,该运算装置包括:第一处理单元,用于根据计算窗口的大小对k1个输入特征数据进行第一运算操作,获得中间结果,该计算窗口的大小为k1×k2,k1与k2均为正整数;第二处理单元,用于根据该计算窗口的大小对该第一处理单元输出的k2个中间结果进行第二运算操作,获得计算结果。该运算装置可以有效节省缓存空间,从而节省硬件资源,同时可以减小数据处理的时延。
技术领域
本申请涉及神经网络领域,并且更为具体地,涉及一种用于神经网络的运算装置、电路及相关方法。
背景技术
卷积神经网络由多个层叠加在一起形成,上一层的结果为输出特征图(outputfeature maps,OFMs),作为下一层的输入特征图。通常中间层的输出特征图的通道非常多,图像也比较大。卷积神经网络的硬件加速器在处理特征图数据时,由于片上系统缓存大小和带宽的限制,通常将一张输出特征图分割成多个特征图片段(feature map segment),依次输出每个特征图片段,并且每个特征图片段按列并行输出。例如,一个完整的输出特征图被分割成3个特征图片段,每个特征图片段按列依次输出。
目前,在图像处理过程中,通常使用线缓冲器(line buffer)来实现卷积层运算或池化层运算的数据输入。线缓冲器的结构要求输入数据按照行(或列)优先以光栅化的顺序输入。以池化窗口的高度为k,输入特征矩阵的宽度为W为例,则线缓冲器需要缓存的深度k*W,即线缓冲器必须缓存大小为k*W的输入数据后,才可以进行数据运算,这样会增大数据处理的时延。
上述可知,现有的图像处理方案需要的缓存空间较大,同时数据处理的时延也较大。
发明内容
本申请提供一种用于神经网络的运算装置、电路及相关方法,可以有效节省缓存空间,同时可以减小数据处理的时延。
第一方面,提供一种用于神经网络的运算装置,所述运算装置包括:第一处理单元,用于根据计算窗口的大小对k1个输入特征数据进行第一运算操作,获得中间结果,所述计算窗口的大小为k1×k2,k1与k2均为正整数;第二处理单元,用于根据所述计算窗口的大小对所述第一处理单元输出的k2个中间结果进行第二运算操作,获得计算结果。
在本申请提供的技术方案中,通过将神经网络的窗口操作分解为列操作与行操作,使得只要接收到一行或一列输入数据,就可以开始计算,换句话说,可以按行或按列缓存输入特征矩阵,并且可以同时进行运算,无需像现有技术中必须先缓存够一定数量的二维输入数据之后,才可以进行计算,因此,可以有效减小数据处理的时延,有效提高神经网络的数据处理效率,同时也可以节省存储资源,从而节省硬件资源。
结合第一方面,在第一方面的一种可能的实现方式中,所述运算装置包括M个所述第一处理单元与M个所述第二处理单元,且所述M个第一处理单元与所述M个第二处理单元一一对应,M为大于1的正整数;所述运算装置还包括:预处理单元,用于按列接收输入特征矩阵,并根据所述计算窗口对接收的列输入特征值进行处理,得到M组数据,其中,每组数据包括k1个输入特征值,所述预处理单元还用于将所述M组数据一对一地输入到所述M个第一处理单元中。
在本申请提供的技术方案中,可以实现图像数据的并行处理,从而有效提高数据处理的效率。
第二方面,提供一种用于处理神经网络的电路,所述电路包括:第一处理电路,用于根据计算窗口的大小对k1个输入特征数据进行第一运算操作,获得中间结果,所述计算窗口的大小为k1×k2,k1与k2均为正整数;第二处理电路,用于根据所述计算窗口的大小对所述第一处理电路输出的k2个中间结果进行第二运算操作,获得计算结果。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于深圳市大疆创新科技有限公司,未经深圳市大疆创新科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201780013527.X/2.html,转载请声明来源钻瓜专利网。