[发明专利]一种基于数据库匹配的水声直扩信号m序列盲估计方法有效
申请号: | 201810085106.4 | 申请日: | 2018-01-29 |
公开(公告)号: | CN108306655B | 公开(公告)日: | 2020-09-11 |
发明(设计)人: | 马璐;樊成;乔钢;刘凇佐 | 申请(专利权)人: | 哈尔滨工程大学 |
主分类号: | H04B1/7073 | 分类号: | H04B1/7073;H04B1/709;H04L1/00;H04J13/00 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 150001 黑龙江省哈尔滨市南岗区*** | 国省代码: | 黑龙江;23 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 数据库 匹配 水声直扩 信号 序列 估计 方法 | ||
本发明公开了一种基于数据库匹配的水声直扩信号m序列盲估计方法,属于信号解调领域,包含如下步骤:求出在某一阶数r下所有m序列的本原多项式;依次求出每一个m序列的三阶相关函数并记录下对应的所有相关峰坐标;对于一个m序列的三阶相关函数,将相关峰坐标及其对应的m序列一起作为样本存放在数据库;改变阶数r的值,完成所需数据库的建立;求出截获DSSS信号的三阶相关函数和所有的相关峰坐标;将截获DSSS信号的相关峰坐标与数据库中的样本进行匹配;将匹配程度δ最高的数据库中的样本作为m序列的估计结果。本发明简单易行,可靠性高,既能保证非合作通信的实时性,又能很好地适应水下声信道噪声严重,多径时延大的特点。
技术领域
本发明属于信号解调领域,尤其涉及一种基于数据库匹配的水声直扩信号m序列盲估计方法。
背景技术
扩频通信能在负信噪比条件下正常通信,给侦察和解调带来了很大的难度。为了获取DS信号的更多信息,获取伪码序列成为研究的热点。最常用的是相关法,将噪声建模为白噪声,但当存在相关噪声时,相关法的估计性能将严重下降,对伪码序列的获取也无能为力。相关矩阵分解法,能获取基带DS信号的伪码序列,但没有用到伪码序列的相关性;基于神经网络的多主分量分析法,能提高运算速度,也没有用到伪码序列的相关性,性能很难进一步提高;基于Massey算法的线性移位反馈虽然用到了伪码的相关性,但巨大的运算量使之仅停留在理论研究阶段。
传统的m序列估计方法是得到截获信号的三阶相关函数及其相关峰坐标后,利用矩阵斜消变换求出各个相关峰坐标之间的最大公因式,从而得到m序列的估计结果。但由于水声信道中严重的噪声干扰和多径效应,三阶相关函数相关峰的坐标会发生偏移,使得估计结果出现较大误差。本发明从三阶相关函数的相关峰坐标和m序列本原多项式的一一对应关系出发,在无噪声的高斯信道条件下求出不同m序列的本原多项式所对应的相关峰坐标,按阶数的不同将m序列与其对应的相关峰坐标建成数据库。这种方法在保证实时性的前提下可以更好的适应水声信道环境。
中国专利CN105680903A公开了一种周期长短码直扩码分多址信号多伪码估计方法,该方法充分利用矩阵填充的数学模型和m序列三阶相关峰特性,依次实现信号各用户复合码序列、长扰码序列和短扩频码序列的盲估计。
中国专利CN106817326A中公开了一种多用户周期长短码直扩信号的伪码盲估计方法,该方法充分利用Fast-ICA算法以及m序列三阶相关特性,实现对多用户周期长短码直扩信号的两个伪随机码的盲估计。
中国专利CN105680904A中公开了一种非周期长码直扩信号伪码估计方法,该方法通过循环去均值处理和拟合优度检验更为精确地提取三阶相关峰,实现对非周期长码直扩信号的伪码盲估计。
但以上三种方法在利用m序列三阶相关峰特性时均没有建立完备的数据库,并不是通过数据库匹配的方式得到m序列的估计结果。以上方法在噪声严重、多径时延较大的水声信道中性能恶化严重,并不能很好的适应水声环境的实际需求。
发明内容
本发明的目的在于公开可靠性高,实时性强的一种基于数据库匹配的水声直扩信号m序列盲估计方法。
本发明的目的是这样实现的:
一种基于数据库匹配的水声直扩信号m序列盲估计方法,包含如下步骤:
步骤(1):求出在某一阶数r下所有m序列的本原多项式:
某一阶数r下的m序列的本原多项式F(x),满足:
(1)F(x)是既约的,即不能再分解因式;
(2)F(x)可整除xm+1,其中m=2r-1;
(3)F(x)不能整除xq+1,其中q<r。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于哈尔滨工程大学,未经哈尔滨工程大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201810085106.4/2.html,转载请声明来源钻瓜专利网。