[发明专利]一种基于KL散度的通信信号图域特征提取方法有效
申请号: | 201810114008.9 | 申请日: | 2018-02-05 |
公开(公告)号: | CN108494711B | 公开(公告)日: | 2020-09-18 |
发明(设计)人: | 阎啸;王茜;刘冠男;吴孝纯;张国玉 | 申请(专利权)人: | 电子科技大学 |
主分类号: | H04L27/00 | 分类号: | H04L27/00 |
代理公司: | 成都行之专利代理事务所(普通合伙) 51220 | 代理人: | 温利平 |
地址: | 611731 四川省成*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 kl 通信 信号 特征 提取 方法 | ||
本发明公开了一种基于KL散度的通信信号图域特征提取方法,利用通信信号的循环谱,在保证算法鲁棒性的前提下实现了特征序列的自动构建;具体讲,本发明首先通过图域映射理论,将通信信号的循环谱转换为一系列邻接矩阵,并提取邻接矩阵中的元素构建特征序列备选集;然后对特征序列备选集中的每一个索引,根据每种调制类型在该索引处元素值的大小确定主调制类型,并计算主调制类型相对其他调制类型的KL散度;最后根据KL散度的大小来建立每种调制类型的特征序列。
技术领域
本发明属于信号处理技术领域,更为具体地讲,涉及一种基于KL散度的通信信号图域特征提取方法。
背景技术
自动调制分类(AMC)可以在很少或没有先验知识的情况下识别接收信号的调制类型,广泛应用于军事和民用通信。典型的自动调制识别方法通常分为两类:基于最大似然的方法(ML)和基于特征提取的方法(FB)。基于最大似然的方法是一种基于假设检验的理论,通过接收信号的似然函数,将似然比与一个门限值做比较做出判决,这种方法可以得到贝叶斯意义上的最优解,但是也存在诸多弊端;基于特征识别的方法包括特征提取(FE)和模式识别(PR)两个阶段,特征提取阶段从接收到的未知信号中提取若干参考特征,然后在模式识别阶段根据提取的特征判断信号的调制类型,这种方法虽然不是最优的但实施效率相比前者较高。但两种方法都需要系统提供较高的运算能力,难以用于一些实时性要求较高而系统资源受限的特殊应用场合;现有识别方法在处理实际无线通信信号时性能严重恶化,实际工程应用中鲁棒性差。
基于图域的自动调制分类(AMCG)第一次将AMC变换到图形域,并且已经实现了比现有PR和基于LB的决策理论算法更优的性能。该方法利用调制信号的循环谱,依据循环频率将循环谱映射到图域,构建为加权有向环,手动记录邻接矩阵次对角线上的非零项,这些非零项被构建为有效特征参数。然而在AMCG中的整个图域特征构建是通过人工进行的,计算十分繁琐,工作量大,如果不适当地选择特征序列,容易造成较大的误差,通常会影响识别效果。这就需要一种科学地选择特征的方法,用于AMCG特征的自动构建。
KL散度用来表示两个随机分布的差异,通过计算某种调制类型相对于其他调制类型的KL散度并根据其大小进行排序,可以实现信号图域特征的自动构建,提取较少数量的特征达到更优化的性能,在避免人工参与特征构建的同时保证AMCG的鲁棒性。
发明内容
本发明的目的在于克服现有技术的不足,提供一种基于KL散度的通信信号图域特征提取方法,在保证算法鲁棒性的前提下实现无人工参与的特征序列自动构建。
为实现上述发明目的,本发明一种基于KL散度的通信信号图域特征提取方法,其特征在于,包括以下步骤:
(1)、通信信号图域映射
(1.1)、设置调制类型候选集Mdef,Mdef={M1,M2,...,MK},其中,Mk表示第k种调制类型,k=1,2,...,K,K表示调制类型总数;
(1.2)、利用FAM算法计算通信信号x(n)的循环谱其中,α为循环频率,α的取值为[α1,α2,…,αp],p为循环频率的取值个数,f为x(n)的频率,再对循环谱进行归一化和量化处理得到谱
(1.3)、在谱中,根据的对称性,在每种调制类型下取α和f均为正的四分之一谱映射到图域,得到一个图集其中,表示第k种调制类型下循环频率为ατ时的一个图,τ<p;将图集中的每一个图转换为一个邻接矩阵,建立起相应的邻接矩阵集由图转换成的邻接矩阵;
同理,建立其余调制类型下的邻接矩阵集;
(2)、构建特征序列备选集
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于电子科技大学,未经电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201810114008.9/2.html,转载请声明来源钻瓜专利网。