[发明专利]一种结合深度可信度评价因子的深度图显著性检测方法有效
申请号: | 201810121931.5 | 申请日: | 2018-02-07 |
公开(公告)号: | CN108470178B | 公开(公告)日: | 2021-09-07 |
发明(设计)人: | 周洋;刘晓琪;尉婉丽 | 申请(专利权)人: | 杭州电子科技大学 |
主分类号: | G06K9/46 | 分类号: | G06K9/46;G06K9/00 |
代理公司: | 杭州君度专利代理事务所(特殊普通合伙) 33240 | 代理人: | 朱月芬 |
地址: | 310018 浙*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 结合 深度 可信度 评价 因子 显著 检测 方法 | ||
本发明涉及一种结合深度可信度估计的深度图像显著性检测方法。相对于平面图像,立体图像中所包含的深度特征对于目标物体的显著性检测提供了更有效的信息。本发明包括深度可信度评价因子计算、预处理和深度显著性检测;深度可信度评价因子用来客观的描述深度图所包含目标区域深度信息的可信度;深度图可信度越好,提取目标物体的有用信息越多。此外,图像中距离人眼较近但非显著物体所在的区域对于显著性检测会造成一定影响;针对该情况提出一种预处理方式来降低地面等这类背景区域的干扰;最后,结合深度可信度评价因子进行基于深度紧凑性和对比度的显著性计算得到最终显著结果图。本发明获得的深度显著图质量较高,与视觉注意机制保持良好一致。
技术领域
本发明属于视频图像处理技术领域,具体涉及一种结合深度图可信性评价因子的深度图显著性检测方法。
背景技术
近年来,在计算机视觉、神经科学等多个领域中对于人类视觉注意力机制的建模和研究已经成为主流。视觉注意力机制可以帮助人类快速地识别视觉显著区域,进而从大量复杂的视觉信息中获取有价值的内容。因此,模仿人类视觉机制进行显著性区域检测是计算机视觉领域的热门研究内容之一。如今,多媒体技术迅速成为当前的热门技术,立体视频(图像)备受社会各界关注,三维摄像机、立体电视机等数码媒体产品受到人们的追捧,成为信息技术的主流媒体并深深地影响着我们的日常生活。之所以立体视频技术相对于传统的二维视频技术更加热门,是因为它可以给观众提供一种更真实的体验感,其包含的深度信息具有丰富的视觉层次感,同时也有更强的视觉冲击。
针对显著性检测技术,传统的检测模型大部分是基于图像的颜色,亮度等特性而采用不同的算法进行显著性检测,但日常生活中人眼除了接收到颜色、亮度等信息,深度信息也是信息特征之一。在立体图像的显著性计算过程中,深度特征可以提供更准确的位置信息。简单来说,深度图像的像素值能反映场景中物体到相机的距离,可应用于立体场景中目标区域的提取。而到目前为止,对于立体图像的显著性检测模型仍然没有系统完整的框架,而针对于深度图的研究和计算也才逐步兴起。
鉴于上述现状,需要对立体图像和深度信息进行进一步的研究和学习,充分利用深度图像中的有效信息,进行显著性计算,并且与立体图像显著性计算的其他特征计算融合,准确的检测出立体图像的显著区域。
发明内容
本发明针对现有技术的不足,提供一种结合深度可信度评价因子的计算方法。该方法具体包括以下步骤:
步骤一:输入深度图,采用SLIC算法将深度图分割为超像素块,并构建图G=(V,E);节点V由超像素分割产生,并设定为每一个超像素块的质心;边缘E连接相邻像素块;(SLIC算法为已有技术)
步骤二:深度可信度评价因子分析
深度可信度评价因子用来客观的描述深度图所包含目标区域深度信息的可信度;以超像素块为单元,结合均值、方差、熵值的物理意义,首先定义每个超像素块的参数并将其归一化,具体如下:
其中,m和s分别表示深度图的深度平均值和标准差,mi表示超像素块i的深度均值,0≤i≤N,N为超像素块的个数,本文取200。H为二维图像熵,表示深度值分布的随机性,pl为某个深度灰度值在该图像中出现的概率,可由灰度直方图获得,L为灰度等级;C0为控制常量,设定其值为2.0;
融合各超像素块的参数得出深度图可信度评价因子λ如下:
其中,N为SLIC算法计算时的超像素块个数,N取200;
步骤三:深度图预处理
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于杭州电子科技大学,未经杭州电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201810121931.5/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种图像处理中的反光帧处理方法
- 下一篇:用于检测对象的方法和装置