[发明专利]实例分割方法和装置、电子设备、程序和介质有效
申请号: | 201810137044.7 | 申请日: | 2018-02-09 |
公开(公告)号: | CN108460411B | 公开(公告)日: | 2021-05-04 |
发明(设计)人: | 刘枢;亓鲁;秦海芳;石建萍;贾佳亚 | 申请(专利权)人: | 北京市商汤科技开发有限公司 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06K9/46;G06K9/32 |
代理公司: | 北京思源智汇知识产权代理有限公司 11657 | 代理人: | 毛丽琴 |
地址: | 100084 北京市海淀区中*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 实例 分割 方法 装置 电子设备 程序 介质 | ||
1.一种实例分割方法,其特征在于,包括:
通过神经网络对图像进行特征提取,输出至少两个不同层级的特征;
从所述至少两个不同层级的特征中抽取所述图像中至少一实例候选区域对应的区域特征、并对同一实例候选区域对应的区域特征进行融合,得到各实例候选区域的第一融合特征;
基于各第一融合特征进行实例分割,获得相应实例候选区域的实例分割结果和/或所述图像的实例分割结果;
其中,所述基于各第一融合特征进行实例分割,获得相应实例候选区域的实例分割结果,包括:
基于一第一融合特征,进行像素级别的实例类别预测,获得所述一第一融合特征对应的实例候选区的实例类别预测结果;基于所述一第一融合特征进行像素级别的前背景预测,获得所述一第一融合特征对应的实例候选区域的前背景预测结果;
基于所述实例类别预测结果和所述前背景预测结果,获取所述一第一融合特征对应的实例物体候选区域的实例分割结果。
2.根据权利要求1所述的方法,其特征在于,所述通过神经网络对图像进行特征提取,输出至少两个不同层级的特征,包括:
通过所述神经网络对所述图像进行特征提取,经所述神经网络中至少两个不同网络深度的网络层输出至少两个不同层级的特征。
3.根据权利要求1所述的方法,其特征在于,所述输出至少两个不同层级的特征之后,还包括:
将所述至少两个不同层级的特征进行至少一次折回融合,得到第二融合特征;其中,一次所述折回融合包括:基于所述神经网络的网络深度方向,对分别由不同网络深度的网络层输出的不同层级的特征,依次按照两个不同的层级方向进行融合;
从所述至少两个不同层级的特征中抽取所述图像中至少一实例候选区域对应的区域特征,包括:从所述第二融合特征中抽取所述至少一实例候选区域对应的区域特征。
4.根据权利要求3所述的方法,其特征在于,所述两个不同的层级方向,包括:从高层级特征到低层级特征的方向、和从低层级特征到高层级特征的方向。
5.根据权利要求4所述的方法,其特征在于,所述依次按照两个不同的层级方向,包括:
依次沿从高层级特征到低层级特征的方向和从低层级特征到高层级特征的方向;或者
依次沿从低层级特征到高层级特征的方向和从高层级特征到低层级特征的方向。
6.根据权利要求5所述的方法,其特征在于,对分别由不同网络深度的网络层输出的不同层级的特征,依次沿从高层级特征到低层级特征的方向和从低层级特征到高层级特征的方向进行融合,包括:
沿所述神经网络的网络深度从深到浅的方向,依次将所述神经网络中,经网络深度较深的网络层输出的较高层级的特征上采样后,与经网络深度较浅的网络层输出的较低层级的特征进行融合,获得第三融合特征;
沿从低层级特征到高层级特征的方向,依次将较低层级的融合特征降采样后,与所述第三融合特征中较高层级的融合特征进行融合。
7.根据权利要求6所述的方法,其特征在于,所述较高层级的特征,包括:
经所述神经网络中所述网络深度较深的网络层输出的特征、或者对所述网络深度较深的网络层输出的特征进行至少一次特征提取得到的特征。
8.根据权利要求6所述的方法,其特征在于,所述依次将所述神经网络中,经网络深度较深的网络层输出的较高层级的特征上采样后,与经网络深度较浅的网络层输出的较低层级的特征进行融合,包括:
依次将所述神经网络中,经网络深度较深的网络层输出的较高层级的特征上采样后,与相邻的、经网络深度较浅的网络层输出的较低层级的特征进行融合。
9.根据权利要求6所述的方法,其特征在于,所述依次将较低层级的融合特征降采样后,与所述第三融合特征中较高层级的融合特征进行融合,包括:
依次将较低层级的融合特征降采样后,与相邻的、所述第三融合特征中较高层级的融合特征进行融合。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京市商汤科技开发有限公司,未经北京市商汤科技开发有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201810137044.7/1.html,转载请声明来源钻瓜专利网。