[发明专利]一种μ律函数下基于参数调整的比例LMP滤波方法有效

专利信息
申请号: 201810178135.5 申请日: 2018-03-05
公开(公告)号: CN108462481B 公开(公告)日: 2022-10-21
发明(设计)人: 张静静;石颖;赵集;陈龙;毛翔 申请(专利权)人: 成都优艾维智能科技有限责任公司;国网浙江省电力有限公司
主分类号: H03H21/00 分类号: H03H21/00
代理公司: 成都巾帼知识产权代理有限公司 51260 代理人: 林娜
地址: 中国(四川)自由贸易试验区成都高*** 国省代码: 四川;51
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 函数 基于 参数 调整 比例 lmp 滤波 方法
【说明书】:

发明公开了一种μ律函数下基于参数调整的比例LMP滤波方法,包括以下步骤:将自适应滤波器的输入信号与该滤波器的权值向量期望值相乘,再加上噪声信号,得到期望输出信号;将自适应滤波器的输入信号与该滤波器实时权值向量相乘,得到实际输出信号;将期望输出信号和实时输出信号做差,得到信号误差,计算代价函数;引入μ律函数下随系统稀疏度调整参数的对角矩阵,对权值向量进行调整;将调整后的权值向量作为滤波器新的实时权值向量。本发明使得自适应滤波器既能够在稀疏度较大的系统中保持良好的收敛速度和滤波精度,也能在稀疏度较小的系统中保持良好的收敛速度和滤波精度,提高了自适应滤波器对环境的适应性。

技术领域

本发明涉及数字信号处理技术领域,特别是涉及一种μ律函数下基于参数调整的比例LMP滤波方法。

背景技术

自适应滤波器是一种通过自适应算法改变传统滤波器的参数来追踪信号的时变特征的滤波器.传统滤波器需要知道信道结构,然而实际情况中很多信道是未知的,而自适应滤波器能在不知道系统结构的情况下根据信号或者噪声的统计特性,通过迭代的方式自适应的找到最优的滤波器参数.这一特性使得自适应滤波在通信领域的回波消除、信道均衡、滤波与逆滤波、系统辨识、噪声消除等方面得到广泛的应用。

近年来,随着信息化和现代数字技术的发展,许多领域对未知信道的信号特征提取和噪声消除的要求越来越强烈,需要能够对信号进行实时处理。LMP算法是一种自适应处理算法,能够实现信号的滤波、平滑及预测等操作。LMP算法以误差信号绝对值的p次方为代价函数,利用梯度下降法得到权重更新公式。

在稀疏系统辨识中自适应滤波器的长度会成倍增加,这不仅导致了算法的收敛速度随之降低,而且使得滤波精度也有所下降。然而在这数量众多的自适应滤波器系数中只有很少的系数有显著的值,其余大部分都是零或者很小的数,故有必要采用某种方法以缓解自适应滤波器在这种情况下的性能退化。2000年Donald L.Duttweiler提出了系数比例自适应算法。系数比例自适应指的是引入一个步长控制矩阵,使得当前时刻的步长参数与当前时刻滤波器系数的绝对值成正比,这样处理的话,较大的滤波器系数获得较大的步长参数,较小的滤波器系数获得较小的步长参数,从而提高了算法的收敛速度。比例LMP算法在LMP算法的基础上引入步长控制矩阵,使得不同系数通过不同步长参数来适当调节,有效的提高了算法的收敛速度。然而,比例LMP算法是针对稀疏程度较大的冲激响应提出来的,当系统稀疏度减小时,比例LMP算法的收敛速度会急剧退化,甚至比LMP算法还慢。

发明内容

本发明的目的在于克服现有技术的不足,提供一种μ律函数下基于参数调整的比例LMP滤波方法,引入μ律函数下随系统稀疏度调整参数的对角矩阵,并结合代价函数对自适应滤波器的权值向量进行调整,使得自适应滤波器既能够在稀疏度较大的系统中保持良好的收敛速度和滤波精度,也能在稀疏度较小的系统中保持良好的收敛速度和滤波精度,提高了自适应滤波器对环境的适应性。

本发明的目的是通过以下技术方案来实现的:一种μ律函数下基于参数调整的比例LMP滤波方法,包括以下步骤:

S1.将自适应滤波器的输入信号x(n)=[x(n),x(n-1),...,x(n-L+1)]T与该滤波器的权值向量期望值相乘,再加上噪声信号v(n),得到期望输出信号d(n):

d(n)=w*Tx(n)+v(n);

式中,L表示信道长度;

S2.将自适应滤波器的输入信号x(n)=[x(n),x(n-1),...,x(n-L+1)]T与该滤波器实时权值向量w(n)=[w1(n),w2(n),...,wL(n)]T相乘,得到实际输出信号y(n):

y(n)=wT(n)x(n);

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于成都优艾维智能科技有限责任公司;国网浙江省电力有限公司,未经成都优艾维智能科技有限责任公司;国网浙江省电力有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201810178135.5/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top