[发明专利]一种α-Fe2 有效
申请号: | 201810194725.7 | 申请日: | 2018-03-09 |
公开(公告)号: | CN108217750B | 公开(公告)日: | 2020-02-28 |
发明(设计)人: | 孟凡利;李博;赵勇;常源隆 | 申请(专利权)人: | 东北大学 |
主分类号: | C01G49/00 | 分类号: | C01G49/00;B82Y30/00;B82Y40/00;G01N27/12 |
代理公司: | 北京睿邦知识产权代理事务所(普通合伙) 11481 | 代理人: | 方莉 |
地址: | 110819 辽宁*** | 国省代码: | 辽宁;21 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 fe base sub | ||
本发明涉及一种α‑Fe2O3/FeOOH复合功能材料及其制备方法和应用,属于新材料领域。一种α‑Fe2O3/FeOOH复合功能材料,其特征在于:所述复合材料为FeOOH将α‑Fe2O3包覆于其内形成的复合材料,所述复合功能材料的外形为纺锤形纳米棒结构,其纳米棒的长度为100~1000nm,横向最大尺寸为10~60nm。本发明通过目标产物中的羟基与醇类气体上的羟基之间的相互作用增加气体的吸附概率,利用氧化物和羟基氧化物的协同作用实现对挥发性有机物的检测,尤其是对正丁醇气体的高选择性和高灵敏度检测,对于实现其他醇类气体的高选择性、高灵敏度检测有一定的参考价值。
技术领域
本发明涉及一种α-Fe2O3/FeOOH复合功能材料及其制备方法和应用,属于新材料领域。
背景技术
挥发性有机化合物(VOCs)在室温下易挥发,可能导致人体中毒,轻度患者会出现头痛,头晕,咳嗽,恶心,呕吐或醉酒,严重者会出现肝中毒甚至很快昏迷,有的还可能有生命危险。正丁醇是VOCs的一种,被广泛用作溶剂,有机合成中间体和萃取剂。长时间暴露于正丁醇的环境下可能会引起头痛,头晕,嗜睡,皮炎,眼睛,鼻子以及咽喉不适等症状。所以高效快速检测VOCs对人体健康具有重要意义。
金属氧化物半导体纳米材料由于其独特的优势被广泛应用于气敏研究,但金属氧化物材料普遍存在灵敏度低、选择性差的问题,如α-Fe2O3作为一种带隙宽度为2.1eV 的n型半导体,常用来检测液化石油气、乙醇气体、丙酮气体、硫化氢气体,但其灵敏度低,且存在交叉敏感的问题。而CuO和NiO作为P型半导体,常用来检测硫化氢气体、氨气、二氧化氮气体、甲醛气体等,也同样存在灵敏度低,选择性差的问题。近年来,为了提高其灵敏度和选择性,人们做出了不懈的努力,其中包括贵金属掺杂 Au、Ag、Pt、Pd、Cd等和形貌调控,纳米颗粒、核壳纳米球、多孔纳米棒、纳米管、纳米带以及多孔网络等。这些发明在提高金属氧化物气敏材料的灵敏度上取得了一定的进展。
发明内容
本发明要解决的技术问题为提供一种合成氧化物和羟基氧化物两相共存的复合功能材料的方法。本发明要解决的另一个技术问题为提供一种上述氧化物/羟基氧化物复合功能材料的用途;利用氧化物和羟基氧化物的协同作用实现对易挥发有机污染气体的高灵敏度和高选择性检测。
一种α-Fe2O3/FeOOH复合功能材料,所述复合材料为FeOOH将α-Fe2O3包覆于其内形成的复合材料。
本发明所述α-Fe2O3/FeOOH复合功能材料为羟基氧化铁和α-Fe2O3形成的复合功能材料。
进一步地,所述复合功能材料的外形为纺锤形纳米棒结构,其纳米棒的长度为100~1000nm,横向最大尺寸为10~60nm。
本发明的另一目的是提供α-Fe2O3/FeOOH复合功能材料的制备方法。
一种α-Fe2O3/FeOOH复合功能材料的制备方法,包括下述工艺步骤:
步骤1,将铁盐和钠盐按摩尔比为0.1:1~0.2:1溶于水后于95℃~105℃下保温6~10 h后制得前驱物的溶液,其中,铁盐为FeCl3·6H2O或FeSO4·7H2O;钠盐为NaNO3、 NaOH或CH3COONa;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东北大学,未经东北大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201810194725.7/2.html,转载请声明来源钻瓜专利网。
- 一种Nd<sub>2</sub>O<sub>3</sub>-Yb<sub>2</sub>O<sub>3</sub>改性的La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>-(Zr<sub>0.92</sub>Y<sub>0.08</sub>)O<sub>1.96</sub>复相热障涂层材料
- 无铅[(Na<sub>0.57</sub>K<sub>0.43</sub>)<sub>0.94</sub>Li<sub>0.06</sub>][(Nb<sub>0.94</sub>Sb<sub>0.06</sub>)<sub>0.95</sub>Ta<sub>0.05</sub>]O<sub>3</sub>纳米管及其制备方法
- 磁性材料HN(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>·[Co<sub>4</sub>Na<sub>3</sub>(heb)<sub>6</sub>(N<sub>3</sub>)<sub>6</sub>]及合成方法
- 磁性材料[Co<sub>2</sub>Na<sub>2</sub>(hmb)<sub>4</sub>(N<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·(CH<sub>3</sub>CN)<sub>2</sub> 及合成方法
- 一种Bi<sub>0.90</sub>Er<sub>0.10</sub>Fe<sub>0.96</sub>Co<sub>0.02</sub>Mn<sub>0.02</sub>O<sub>3</sub>/Mn<sub>1-x</sub>Co<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> 复合膜及其制备方法
- Bi<sub>2</sub>O<sub>3</sub>-TeO<sub>2</sub>-SiO<sub>2</sub>-WO<sub>3</sub>系玻璃
- 荧光材料[Cu<sub>2</sub>Na<sub>2</sub>(mtyp)<sub>2</sub>(CH<sub>3</sub>COO)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub>n</sub>及合成方法
- 一种(Y<sub>1</sub>-<sub>x</sub>Ln<sub>x</sub>)<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>薄膜的直接制备方法
- 荧光材料(CH<sub>2</sub>NH<sub>3</sub>)<sub>2</sub>ZnI<sub>4</sub>
- Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>复合材料的制备方法