[发明专利]一种(BiO)2 有效
申请号: | 201810215007.3 | 申请日: | 2018-03-15 |
公开(公告)号: | CN108404948B | 公开(公告)日: | 2020-12-25 |
发明(设计)人: | 朱刚强 | 申请(专利权)人: | 陕西师范大学 |
主分类号: | B01J27/232 | 分类号: | B01J27/232;B01J35/02;B01J35/10;C02F1/30;C02F101/34 |
代理公司: | 西安佩腾特知识产权代理事务所(普通合伙) 61226 | 代理人: | 曹宇飞 |
地址: | 710062 陕西省西*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 bio base sub | ||
本发明公开了一种(BiO)2CO3‑BiO2‑x纳米光催化剂的制备方法,属于光催化的技术领域,其是将NaBiO3·2H2O和一定量的g‑C3N4溶于去离子水中,并搅拌30min,然后加入NaOH溶液搅30min,在180~200℃进行水热反应4~10h,反应结束后,冷却,滤出沉淀物,沉淀物分别用去离子水和乙醇清洗,烘干,即得到(BiO)2CO3‑BiO2‑x,通过本发明的方法制备的(BiO)2CO3‑BiO2‑x纳米光催化剂,其复合BiO2‑x提高了(BiO)2CO3对可见光的吸收,并且抑制了光生电子和空穴在(BiO)2CO3的复合,从而提高了(BiO)2CO3的可见光催化性能,特别是对双酚A的降解率高于70%以上,对苯酚的降解率达到50%以上。
技术领域
本发明属于光催化的技术领域,特别涉及一种(BiO)2CO3-BiO2-x复合光催化剂及其制备方法和应用。
背景技术
随着近年来水污染问题越来越得到关注,污水处理成为目前主要的研究对象。其中,光催化技术由于具有材料无毒性、强氧化性和还原性、产物无二次污染、能够利用太阳能等特点,成为处理水污染的有效手段之一。目前,在光催化材料中,TiO2因无毒、具有较强的强化能力和稳定的化学性质,成为世界上最当红的光催化材料。由于TiO2只有受到紫外光照射时才能形成电子和空穴对,且由于其禁带宽度较窄,电子和空穴很容易再次复合,使其光催化活性降低,阻碍TiO2光催化材料的实际应用。因此,开发新型的光催化材料成为主要的研究方向。在开发的新的光催化材料的过程中,半导体材料因为具有独特的光催化性质,受到了研究者广泛的关注。
在对于半导体光催化材料的研究中,铋系半导体光催化材料因具有独特的电子结构,优良的光吸收能力和较高的光催化性能,从而得到广泛的研究和开发。其中,(BiO)2CO3的应用最为广泛。专利公开号为CN103084195B的中国专利文献公开了一种(BiO)2CO3纳米片光催化剂的制备方法,该方法首先将铋源溶解在酸溶液中,加入氨水至反应液呈碱性;然后向得到的反应混合物中通入CO2气体,反应后得到纳米片状(BiO)2CO3。但是该方法制备的(BiO)2CO3不能吸收可见光,仅在紫外光照射下才具有光催化活性。专利公开号为CN102671683B中国专利文献公开了一种纳米片自组装C掺杂(BiO)2CO3微球可见光催化剂的制备方法。该方法制备的C掺杂(BiO)2CO3微球在可见光照射下具有一定的光催化活性。但是相比于纯(BiO)2CO3,C掺杂(BiO)2CO3微球对NO的去除率仅为42.5%。上述两种方法制备的(BiO)2CO3和C掺杂(BiO)2CO3对可见光吸收率低,并且材料表面的光生空穴与光生电子极易复合,使得(BiO)2CO3和C掺杂(BiO)2CO3的光催化活性较低,使用受限。
发明内容
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于陕西师范大学,未经陕西师范大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201810215007.3/2.html,转载请声明来源钻瓜专利网。
- 一种Nd<sub>2</sub>O<sub>3</sub>-Yb<sub>2</sub>O<sub>3</sub>改性的La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>-(Zr<sub>0.92</sub>Y<sub>0.08</sub>)O<sub>1.96</sub>复相热障涂层材料
- 无铅[(Na<sub>0.57</sub>K<sub>0.43</sub>)<sub>0.94</sub>Li<sub>0.06</sub>][(Nb<sub>0.94</sub>Sb<sub>0.06</sub>)<sub>0.95</sub>Ta<sub>0.05</sub>]O<sub>3</sub>纳米管及其制备方法
- 磁性材料HN(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>·[Co<sub>4</sub>Na<sub>3</sub>(heb)<sub>6</sub>(N<sub>3</sub>)<sub>6</sub>]及合成方法
- 磁性材料[Co<sub>2</sub>Na<sub>2</sub>(hmb)<sub>4</sub>(N<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·(CH<sub>3</sub>CN)<sub>2</sub> 及合成方法
- 一种Bi<sub>0.90</sub>Er<sub>0.10</sub>Fe<sub>0.96</sub>Co<sub>0.02</sub>Mn<sub>0.02</sub>O<sub>3</sub>/Mn<sub>1-x</sub>Co<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> 复合膜及其制备方法
- Bi<sub>2</sub>O<sub>3</sub>-TeO<sub>2</sub>-SiO<sub>2</sub>-WO<sub>3</sub>系玻璃
- 荧光材料[Cu<sub>2</sub>Na<sub>2</sub>(mtyp)<sub>2</sub>(CH<sub>3</sub>COO)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub>n</sub>及合成方法
- 一种(Y<sub>1</sub>-<sub>x</sub>Ln<sub>x</sub>)<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>薄膜的直接制备方法
- 荧光材料(CH<sub>2</sub>NH<sub>3</sub>)<sub>2</sub>ZnI<sub>4</sub>
- Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>复合材料的制备方法