[发明专利]面向大型直播场景的单人特写实时识别与自动截图方法有效

专利信息
申请号: 201810222737.6 申请日: 2018-03-16
公开(公告)号: CN108491784B 公开(公告)日: 2021-06-22
发明(设计)人: 张晖;杨纯 申请(专利权)人: 南京邮电大学
主分类号: G06K9/00 分类号: G06K9/00;G06K9/62;H04N21/2187
代理公司: 南京苏科专利代理有限责任公司 32102 代理人: 徐振兴;姚姣阳
地址: 210003 江苏*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 面向 大型 直播 场景 单人 特写 实时 识别 自动 截图 方法
【说明书】:

发明公开了一种面向大型直播场景的单人特写实时识别与自动截图方法,具体如下:实时获取直播视频当前的视频帧图像,检测所述视频帧图像中是否存在人脸;若所述视频帧图像中存在人脸,则采用人脸检测模块获得人脸区域,然后对人脸区域进行人脸大小、清晰度、位置以及角度综合评估,进而选取最优人脸,并将含有最优人脸的当前视频帧图像进行截图保存;最后将最优人脸图像送入人脸识别模块进行识别,输出识别结果。该发明可应用在大型直播场景下对视频中的单人特写进行识别与截图,当满足截图指标时自动截图保存;同时截图指标不仅可以得到质量更佳的截图,还避免了人脸识别中产生大量的重复人脸快照而带来的后端服务器及计算工作量大的问题。

技术领域:

本发明涉及一种面向大型直播场景的单人特写实时识别与自动截图方法,属于视频图像处理技术领域技术领域。

背景技术:

在各种直播平台,比如正规大会直播或者足球直播或者大型晚会直播时,需要在一定情况下截图,对图片上的人物进行人脸识别,从而方便图文介绍。需要截图就一定要检测到人物,关键技术就是人脸检测,而传统的人脸检测由于通常是实时进行检测的,因此在检测过程中会产生大量重复的同一对象的不同人脸快照,并且质量参齐不齐,另外如果全部保存快照进行人脸识别,则会带来存储量大和人脸识别效果不佳的缺点,因此本发明为了解决这个问题,提出了一种图像质量评估方法,只有满足截图要求才会进行保存识别。

公开于该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域一般技术人员所公知的现有技术。

发明内容:

本发明的目的在于提供一种识别效果好、存储量小的面向大型直播场景的单人特写实时识别与自动截图方法,从而克服上述现有技术中的缺陷。

为实现上述目的,本发明提供了一种面向大型直播场景的单人特写实时识别与自动截图方法,具体步骤如下:

步骤1,实时获取直播视频信号,对视频流中的每帧图像中值滤波后转换到YCgCr颜色空间,并建立肤色模型,对图像进行肤色检测,通过形态学处理后去除背景区域,获得候选肤色区域;

步骤2,基于步骤1的肤色检测,采用Adaboost算法训练基于Haar-like特征的人脸分类器对候选肤色区域进行人脸检测,得到人脸区域;

步骤3,采用多尺度Struck跟踪算法对步骤2检测到的人脸区域实时跟踪,并计算跟踪的人脸个数,只有当检测到的人脸个数为1时才保留当前帧图像,其余的舍弃;

步骤4,在步骤3的基础上,采用基于Haar-like特征的Adaboost算法检测人眼,并获得双眼位置坐标L(x1,y1),R(x2,y2),进而通过设定比例求得人脸矩形位置;

步骤5,对每个人脸区域图像进行人脸大小、清晰度、位置以及角度评估后经加权计算得到人脸图像的得分,选取得分最高的作为人脸区域图像中的最优脸;

步骤6,将含有最优脸的当前视频帧图像进行截图保存,送入人脸识别模块,输出识别结果。

本方面进一步限定的技术方案为:

优选地,上述技术方案中,步骤2中Adaboost算法,用正负人脸样本训练基于Haar-like特征的强分类器,并将强分类器串联成级联分类器,实现快速实时的人脸检测。

优选地,上述技术方案中,步骤3多尺度Struck人脸跟踪算法采用高斯核函数,并且支持向量集维数阈值取100。

优选地,上述技术方案中,步骤5所述人脸大小评估方法如下:

通过人脸区域图像面积占整幅原始自然人脸图像面积的比例进行评估,具体计算公式如下:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京邮电大学,未经南京邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201810222737.6/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top