[发明专利]一种基于LSTM自动补全代码的方法有效

专利信息
申请号: 201810230691.2 申请日: 2018-03-20
公开(公告)号: CN108388425B 公开(公告)日: 2021-02-19
发明(设计)人: 李戈;金芝 申请(专利权)人: 北京大学
主分类号: G06F8/30 分类号: G06F8/30;G06F8/41
代理公司: 北京辰权知识产权代理有限公司 11619 代理人: 刘广达
地址: 100871*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 lstm 自动 代码 方法
【说明书】:

本发明提供了一种基于LSTM自动补全代码的方法,包括:源代码处理步骤,使用抽象语法树解析源代码;线下训练步骤,使用LSTM模型训练语言模型;线上代码补全步骤,根据训练过的语言模型补全代码。所述LSTM模型包括约束字符级LSTM和使用前上下文标识符编码器的标识符级LSTM。本发明实现了在编程过程中,任意地方输入任意字符都可以实现代码的自动补全,以及任意代码的推荐,并保证推荐过程的准确性。本发明的技术方案具有简单、快速的特点,能够较好地提高代码推荐的准确率和推荐效率。

技术领域

本发明涉及计算机软件工程技术领域,尤其是涉及一种基于LSTM自动补全代码的方法。

背景技术

计算机自动生成代码是近年来软件工程的研究热点之一。代码自动生成极大的减少了程序员的工作量,提高了开发效率。随着开源社区的发展,我们可以通过分析大量的代码从而进行代码生成。代码自动生成的一大困难在于源代码本身具有诸多的约束和限制。近年来,在原有的基于组合优化方法进行程序综合研究的基础上,产生了一些新的基于机器学习技术进行程序生成的方法。

按照所采取的技术及应用场景的不同,可将当前的程序生成方法分成两类:一类为基于程序输入输出结果的程序生成,一类为基于程序代码语言特性的代码生成。基于输入输出结果的程序综合主要基于机器学习模型,利用程序输入输出结果之间的对应关系构造训练数据集,并利用该数据集对机器学习模型进行训练,以达到在输入输出效果上模拟程序行为的目的。该类方法尤以基于深度神经网络的方法为代表。基于程序设计语言模型的程序生成主要利用程序设计语言自身所具有的的统计特性,通过对已有大量程序代码的学习建立相应程序设计语言的机器学习模型,并基于该模型在已有程序代码的基础上通过自动补全的方式生成新的代码。

LSTM(Long Short-Term Memory)是长短期记忆网络,是一种时间递归神经网络,适合于处理和预测时间序列中间隔和延迟相对较长的重要事件。LSTM已经在科技领域有了多种应用。基于LSTM的系统可以学习翻译语言、控制机器人、图像分析、文档摘要、语音识别图像识别、手写识别、控制聊天机器人、预测疾病、点击率和股票、合成音乐等等任务。

中国发明专利申请号201710687197.4,涉及一种基于长短期记忆网络(LSTM)的代码推荐方法,针对现有代码推荐技术普遍存在推荐准确率低、推荐效率低等问题,该发明先将源代码提取成API序列,利用长短期记忆网络构建一个代码推荐模型,学习API调用之间的关系,然后进行代码推荐。并使用了dropout技术防止模型过拟合。同时提出运用ReLu函数代替传统饱和函数,解决梯度消失问题加快模型收敛速度,提高模型性能,充分发挥神经网络的优势。

然而,上述专利实际上进行的是API推荐,与代码级推荐或者自动补全的目标仍有较大差距。不能实现在任意地点对任意代码的推荐。

如图1所示,为现有技术中常见的代码自动补全方式。当在“accuracy=tf”之后输入“.”时,会自动出现一个下拉菜单,编程人员可以选择例如“framework_lib”、“client_lib”等类名进行代码自动补全。然而,这种方式的缺陷在于:只有当用户输入“.”等特殊字符后才能够出现下拉菜单进行代码补全,无法实现在任意地点(例如输入任意一个字母时)进行代码补全或推荐;下拉菜单里推荐的仅仅是类名而非一段代码,仍然无法直接使用。

发明内容

为解决以上问题,本发明提出深度自动代码生成,采用基于LSTM的引入标识符实现代码自动补全的任务,将训练语言模型用于从大规模代码集合中提取出的程序,预测代码元素。

具体的,本发明提供了一种基于LSTM自动补全代码的方法,包括:

源代码处理步骤,使用抽象语法树解析源代码;

线下训练步骤,使用LSTM模型训练语言模型。

线上代码补全步骤,根据训练过的语言模型补全代码。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京大学,未经北京大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201810230691.2/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top