[发明专利]一种基于人体特征分布的行人解析方法有效
申请号: | 201810273078.9 | 申请日: | 2018-03-29 |
公开(公告)号: | CN108564012B | 公开(公告)日: | 2022-03-08 |
发明(设计)人: | 杨金福;张京玲;王美杰;李明爱;许兵兵 | 申请(专利权)人: | 北京工业大学 |
主分类号: | G06V40/10 | 分类号: | G06V40/10;G06V10/762;G06K9/62 |
代理公司: | 北京思海天达知识产权代理有限公司 11203 | 代理人: | 刘萍 |
地址: | 100124 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 人体 特征 分布 行人 解析 方法 | ||
1.一种基于人体特征分布的行人解析方法,其特征在于,包括如下步骤:
步骤1:数据预处理
将训练集中图像作为输入图像,对输入图像进行预处理,即对输入图像进行多尺度变换、水平翻转和随机裁剪,得到预处理过的训练集;
步骤2:训练基础人体解析网络
步骤2.1:使用深度残差网络ResNet-101作为基础人体解析网络,其中包括卷积层,池化层和全连接层,共101层;将由步骤1得到的预处理过的训练集作为卷积神经网络的输入,训练卷积神经网络,进而对卷积神经网络的网络结构文件和网络参数配置文件进行修改,并产生初始的行人解析结果;
步骤2.2:使用softmax计算解析损失函数:
其中,Lparse为解析损失函数,为深度残差网络模型参数,x为深度特征,K为关节点类别数;此处,K=9;
步骤3:计算关节结构损失函数
步骤3.1:定义9个关节点,分别为头部、上身、左臂、右臂、下身、左腿、右腿、左脚和右脚,并定义如下关节点列表:
其中,为步骤2的初始解析结果所对应的第i个关节点,是步骤1中训练数集的标签图像对应的第i个关节点,I为输入图像;
步骤3.2:计算关节结构损失函数为
表示预测的解析结果对应关节点和训练集中标签图像对应的9个关节点的差值的均值;差值越大,预测越不准确;差值越小,预测越准确,此处K=9;
步骤4:构建人体特征分布模型
首先利用超像素分割方法将人体分割成大小不同的候选区域,然后分别对每个区域建立表象模型和面积比例模型;
步骤4.1:基于超像素分割方法产生人体候选区域
步骤4.1.1:按照设定的超像素个数,在图像内均匀分配种子点;假设图像中共有M个像素点,预分割为N个相同尺寸的超像素,则每个超像素的大小为M/N,则相邻种子点的距离为S=sqrt(M/N);
步骤4.1.2:在种子点的S*S邻域内,计算该邻域内所有像素点的梯度值,将种子点移到该邻域内梯度最小的地方;对该种子点所在邻域内的每个像素点,分别计算它与各种子点的颜色距离和空间距离,并取距离最小的为该像素点的聚类中心;
步骤4.1.3:对步骤4.1.2进行15次以上的迭代,得到最终的聚类中心和候选区域;
步骤4.2:建立表象概率模型
步骤4.2.1:对每个候选区域j,利用L*a*b*颜色空间模型,提取11维颜色特征向量,每一维向量描述了像素或某一图像区域中的颜色属于11种颜色的概率;
步骤4.2.2:对每个候选区域j,计算LBP纹理特征;并与步骤4.2.1提取的颜色特征串联得到候选区域的表象特征Hj,最后利用逻辑斯蒂回归函数建立表象概率模型:
其中,e为指数函数,||·||2表示L2范数;Gk是标签图像中第k类关节点对应的表象特征,Yj=k表示区域j所属的关节点类别为k,k取值为1-9;区域j所属关节点类别,即为表象特征差值最小时对应的标签图像对应的关节点类别;
步骤4.3:建立面积比例模型
步骤4.3.1:对给定的输入图像I,分别计算每种关节区域的面积Ak和图像中人体所占的总面积SI,面积比例概率模型计算如下:
其中面积大小用像素总数来表示,ψk(Ak)表示第k种关节点的面积高斯分布,ψI(SI)表示人体总面积SI的高斯分布;μk表示第k种关节点面积分布的均匀程度,σk表示第k种关节点面积分布的平滑程度;μI表示人体总面积分布的均匀程度,σI人体总面积分布平滑程度;对每个候选区域计算属于不同类别关节点的概率,并认为概率最大对应的就是所属类别;
步骤4.4:根据朴素贝叶斯法则得到最终的损失函数:
Ldistribution(Yj=k|Hj,Ak,SI)=P(Yj=k|Hj)P(Yj=k|Ak,SI)
步骤5:构建总体分布函数
将步骤2的解析损失函数、步骤3的关节结构损失函数和步骤4.4的人体分布损失函数组合即可得到最终的损失函数:
L=Lparse·Ljoint+Ldistribution
步骤6:模型训练
训练平台采用NVIDIA GeForce GTX TITAN X GPU,网络搭建采用Caffe框架,batch-size设置为20,初始学习率为0.001,动量设置为0.9,权重衰减设置为0.0005,优化方法采用梯度下降法;
步骤7:测试
对于给定的输入图像,首先根据解析网络计算初始解析结构,并根据解析结果计算关节结构热图;然后采用超像素分割的方法分割输入图像,并对分割产生的候选区域进行人体分布建模,得到总的损失函数,通过损失函数最小化得到最终的解析结果。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京工业大学,未经北京工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201810273078.9/1.html,转载请声明来源钻瓜专利网。