[发明专利]一种基于迭代决策树的电信用户分类方法有效
申请号: | 201810321941.3 | 申请日: | 2018-04-11 |
公开(公告)号: | CN108564380B | 公开(公告)日: | 2021-07-20 |
发明(设计)人: | 尚家兴;朱倩雯;武红春;周尚波;冯永;钟将 | 申请(专利权)人: | 重庆大学 |
主分类号: | G06Q30/00 | 分类号: | G06Q30/00;G06Q50/00;G06Q50/30 |
代理公司: | 北京同恒源知识产权代理有限公司 11275 | 代理人: | 赵荣之 |
地址: | 400044 重*** | 国省代码: | 重庆;50 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 决策树 电信用户 分类 方法 | ||
本发明涉及一种基于迭代决策树的电信用户分类方法,包括:S1:根据用户的基本信息、通话、短信记录构建用户社交关系网络G(V,E);S2:从G(V,E)中抽取特征,或根据已分类的用户更新其他用户的特征;S3:用迭代决策树对G(V,E)中未分类的用户分类,即判断是否满足|sFriend‑nFriend|≥L;若满足则分类,将分类的用户数记为κ;K若κ>K,回到步骤S2,否则进入步骤S4;S4:令L=L‑1;若L≥0,返回步骤S2,否则进入步骤S5;S5:输出分类结果。本发明在训练集较少的情况下能达到很低的错误率,可以克服训练集占比高导致的过拟合影响,实现用户的精准定位。
技术领域
本发明属于人工智能、数据挖掘领域,具体涉及一种基于迭代决策树的电信用户分类方法。
背景技术
1.移动营销技术
移动营销近年来受到广泛研究,一方面,有人从理论上研究了为什么消费者能接受手机作为宣传信息的方式。通过实证研究,他们发现利用手机客户端进行移动营销时,其能否被用户接受的关键在于所提供的信息对于客户来说所具备的娱乐性以及价值高低。另一方面,有人根据消费者/用户的生活方式、使用动机和产品/服务属性等要素,通过要素分析和聚类分析方法,以实证研究的方式研究了意大利手机用户的行为。还有人则调查了消费者对智能手机时代移动营销的态度,发现虽然手机功能和用户使用频率在不断提高,但消费者持续抱有对移动营销传播的负面态度。现有一种大数据移动营销分析和广告推荐框架,该框架支持离线和在线广告业务,其分析技术是根据移动用户的个人资料、网站访问行为、移动情况等大数据来进行广告推荐。还有一种新的混合多属性决策模型,提出了一个移动电子商务的评估模型,该模型能够提升用户在模糊环境中对不确定移动电子商务信息的接受程度。
2.电信用户分类技术
电信用户分类是移动营销中的重要一环,现有一种基于遗传算法的方法来增强案例推理的案例匹配过程,然后在此基础上又开发了一个原型GA-CBR系统来预测电信客户购买保险的行为,并找出最有可能与最不可能购买保险的顾客。现有技术公开了一种基于案例推理系统的数据降维技术,使用遗传算法从垂直和水平方向对数据进行降维处理。现有技术还包括一个客户分类模型,利用现有客户的数据来挖掘出他们的购买模式。该模型首先独立使用几种分类技术,然后用遗传算法来综合不同的分类结果。有学者研究了电信客户分类问题,他们提出了一种使用支持向量机和人工神经网络技术对电信客户数据进行分类并确定最适合客户群的增值服务的方法。从分类的客户群中,他们推导出具有模糊属性的分类规则。还有学者则通过考虑数据分布的不平衡性来研究客户分类问题。他们将集成学习与成本敏感学习相结合,并提出了一种用于不平衡数据的动态分类器集成方法,可以为每个客户自适应地选择动态集成方法。还包括一种用于移动用户分类的改进决策树算法,该算法引入遗传算法来优化决策树算法的结果。在他此模型中,由于分类属性提高了预测的准确性,此模型可以将移动用户分为四类:普通用户,商务用户,高级商务用户和金牌用户。
3.决策树技术
决策树是一种计算智能技术,得益于其简单性和高效性,已被广泛应用于机器学习和数据挖掘领域。它是一个决策支持工具,使用树状图或决策模型来进行表示,其决策结果包括机会事件结果,资源成本和效用等。现有一种新的顾客生命周期模型,其中包括五个决策模型,即当前价值、历史价值、长期价值预测、信用和忠诚度。此模型使用决策树方法来提取与长期价值、信用和忠诚度有关的重要参数,然后建立客户价值评估体系。还包括一种用于移动用户分类的改进决策树算法,并引入遗传算法来优化决策树算法的结果。通过在真实数据集上的测试,显示了该算法与C4.5决策树和SVM算法相比在分类准确性方面的优越性。一种新的并行化决策树算法,以改善海量数据挖掘应用中的数据处理延迟问题。模型中使用CPU进行流量控制,并使用GPU进行计算。结果表明,与传统的基于CPU的方法相比,该方法可以显着提高时间效率。还有一种通过考虑时间和成本约束来研究决策树,将重点放在如何在有限时间内完成分类任务,从而构建出决策树。从而开发了一种构建时间受限的最小代价树算法,当时间充裕时,该算法会选择能带来最大收益的决策属性,当时间受限时,该算法会选择时间效率最高的决策属性。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆大学,未经重庆大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201810321941.3/2.html,转载请声明来源钻瓜专利网。